Elementary Analysis: The Theory of Calculus by Ross Exercise
Solutions

Khang Tong

Chapter 1: The Set N of Natural Numbers

1. Prove 12422 + -+ 4+ n? = {n(n+ 1)(2n + 1) for all positive integers n
Solution:
Base Case: 1 = £(1)(2)(3) =1 v/
Inductive Step: Assume that 12 + 22 + -+ +n? = tn(n+1)(2n + 1) is true for some n € N. Then,

1
12+22+---+n2+(n+1)2:6n(n+1)(2n+1)+(n+1)2

_ én(n—i—l)@n—l—l)—i— w
_ é(” + D20 +1) + 6(n + 1)]
:é(n+1)[2n2—|—n—|—6n+6]

_ é(n+1)(n+1+1)(2(n+1)+1)

Hence, 12 + 22 + .-+ n? = in(n+1)(2n+ 1) for alln € N

2. Prove 3+ 11+ -+ + (8n — 5) = 4n? — n for all positive integers n.

Solution:
Base Case: 3=4(1)2-1=3v

Inductive Step: Assume that 3 + 11+ --- + (8n — 5) = 4n? — n for some n € N. Then,

34114 +Bn—5)+B(n+1)-)5=4n*> —n+ (8(n+1) —5)
=4n® +7Tn+3
=4n*+2n+1)-n—-1
=4(n+1)? = (n+1)

Hence, 3+ 11+ -+ (8n —5) =4n? —n for alln € N

3. Prove 13+ 23 + ...+ n3 = (14 2+ -+ +n)? for all postive integers n



Solution:
Base Case: 13 = 12/

Inductive Step: Assume that 12 + 23 + .- +n3 = (1 + 2+ .- + n)? for some n € N. Note that
(x +y)? = 22 + 22y + y2. Then,
(T+24-+n)+n+1))=0+2+-+n)?+2(1+2+-+n)(n+1)+ (n+1)*
(inductive hypothesis) = 1> + 23 + .- 40> + (n+1)(2(1 + 2+ --- +n) + (n + 1))
=42 440’ + (4 1)((n)(n + 1) + (n+ 1)
=134+ 4+ nd+(n+ 1) (n+1)
=1P+2% 4+ 4 (n+1)°
Hence, 13423+ - -+n3 = (1424 - -4+n)? implies that 13+23+- - 4+n3+(n+1)3 = (14+2+- - -+n+(n+1))?
and thus, the statement holds for all n € N
|

4. a.) Guess the formula for 1+ 3+ -+ (2n — 1) by evaluating the sum for n = 1,2, 3, and 4 [For n = 1,
the sum is simply 1].
b.) Prove your formula using mathematical induction.

Solution:
We note that the sums appear to be of the form n?2.
Base Case: 1 =12V~

Inductive Step: Assume that 1+ 3+ ---+ (2n — 1) = n? is true for some n € N. Then

143+ +@2n—1)+@2n+1)—1) =n*+(2(n+1)-1)

=n?4+2n+1
=(n+1)2
Hence, 1 +3+ ---+ (2n — 1) = n? for all positive integers n.
|
5. Prove 1+ % + -+ 2% =2 2% for all positive integers n.
Solution:
Base Case: 1+%:2—%/
Inductive Hypothesis: Assume that 1+ % 4+ 4+ % =2 % is true for some n € N. Then,
1+ ! + 1+ ! + LI 2 ! + !
9 on on+l on on+1
1 /1
=2+ —(=--1
5 ()
1 1
= 2 —_ —_—
5 (-3)
1
=2 2n+1
Hence,1+%+---—|—%=2—2%foralln€N. [ |

6. Prove 11" — 4™ is divisible by 7 when n is a positive integer.



10.
11.
12.

Solution:

Base Case: 11 -4 ="7(1) v/
Inductive Step: Assume that 11 — 4™ is divisible by 7 for some n € N. Then

11T 4™ = 11(117) — 11 -4™ 4 11 - 4™ — 4(4™)
(inductive hypothesis) = 11(7m) + 4™ (11 — 4), for some m € N
= 11(7m) + 4"(7)
= 7(11m + 4)

Hence, 11"+1 — 47+ ig divisible by 7, which proves that 11" — 4" is divisible by 7 for all n € N [ ]
Prove 7" — 6n — 1 is divisible by 36 for all positive integers n.

Solution:
Base case: 0/36 v~

Inductive step: Assume that 7" — 6n — 1 is divisible by 36 for some n € N. Then,

7 _6(n+1)—1 —7(7") 7(6n) — 7+ 36n
=7(7" —6n—1)+ 36n
(inductive hypothesis) = 7(36m) + 36n, for some m € N
=36(7Tm +n)

Hence, 7" — 6n — 1 is divisible by 36 for all positive integers n. |

Chapter 2: The Set Q of Rational Numbers

1.

Show that \/§, \/5, N , \/ﬂ, and /31 are not rational numbers

Solution:
We use the Rational Zeros Theoerem

22 —-3=0 = x = +1,+3, none of which are solutions and thus, v/3 is not rational.

Similarly for the rest.

. Show +/2, v/5, and v/13 are not rational numbers

Solution:
If /2 is rational, 23 —2 =0 = 2 = £1, 42, none of which are solutions. Thus, ¥/2 is not rational.

Similarly for the rest.
|



3. Show that /2 + v/2 is not a rational number.

Solution:
By the Rational Zeros Theroem, if \/2 + v/2 is rational, then (22 — 2)? = 2 has a rational solution.
Note that if  is rational, then so is 2 — 2 and this becomes similar to the proof of 2.

[ |
4. Show v/5 — /3 is not a rational number.
Solution:
Proof is similar to (2.3).
[ |

5. Show [3 + /2] is not a rational number

Solution:
3 = (34+v2)2 = (2% —13)% = 36(2) Note that if x is rational, then (2 — 13) is also rational. Proof
resolves similar to (2.2).

|
6. In connection with Example 6, discuss why 4 — 7b? is rational if b is rational.

Solution: ) )
If b is rational, then b can be written as 7, m,n € Z. Then 4 — 7b2 can be written as % where
p=4n? — Tm? and q = n?, p,q € Z since Z is closed under addition and multiplication.

|
Chapter 3: The Set R of Real Numbers
1. (a) Which of the properties A1-A4, M1-M4, DL, O1-O5 fail for N?
(b) Which of these properties fail for Z?
Solution:
(a) A3 and A4 fails for N because 0, —a ¢ N for all a € N. M4 fails because a=! ¢ N for all a > 2.
(b) M4 fails for Z because a~* ¢ Z for a > 2.
]
2.
3. Prove iv. ((—a)(=b) = ab for all a,b) and v. (ac = be and ¢ # 0 imply a = b) of Theorem 3.1
Solution:
(=a)(=b) + (=ab) = (=a)(=b) + (—a)b = (=a)[(=b) + b] = (—a)(0) = 0 = ab + (—ab)
. From (i), this implies that (—a)(—b) = ab.
a1 gec 1 (ac)c™? hypothesis (be)e™t M pee—1 My 1 M3y
|



4.
o.
6.

Prove v. and vii. of Theorem 3.2

(a) Prove |a+ b+ ¢| < |a| + |b] + |¢| for all a,b,c € R. Hint: Apply the triangle inequality twice. Do
not consider eight cases.

(b) Use induction to prove

a1 4+ az + -+ + an| < |ar] + |ag| - + |an|
Solution:
(a)

la+b+cl <la+b+]c (triangle inequality)
< la| + [b] + |¢| (triangle inequality)

(b) Base Case: |a1]| < |ai| v’
Inductive Step: Assume that |a1 + a2 + - - + an| < |a1| + |ag| - - - + |ay]| is true for some n € N. Then,

lar +as+ -+ an+ ant1] <lar + a2+ -+ an| + |ant1] (triangle inequality)
<lai| +laz|-- -+ |an| + |@nt1] (inductive hypothesis)

By induction, this proves that |a; + ag + - -+ + an| < |ai| + |az| - - - + |ay,| for all n € N.

Let a,b € R. Show if a < by for every by > b, then a < b.

Solution:

Assume towards contradiction that a > b. Then a —b > 0. Set by = b+ 1(a — b) so then b; > b for
every value of b € R. Then a —b; =a—b— %(a —b) = 3(a — b) > 0. Then a < by, which contradicts
the fact that a < b;. Hence, our assumption is invalid and a < b.

Chapter 4: The Completeness Axiom

1.

> W

Let S be a nonempty subset of R that is bounded above. Prove if sup S belongs to S, then sup S =
max S. Hint: Your proof should be very short.

Solution:
Since sup S > sg for all so € S and sup S € S, by definition, sup S = max S.



10.
11.

12.

13.

Let S be a nonempty bounded subset of R.
(a) Prove inf S < sup S. Hint: This is almost obvious; your proof should be short.
(b) What can you say about S if inf S = sup S?

Solution:

(a) We have that for any sp € S, inf S < s¢ and sg < sup S. Hence, inf S < 5o < sup S for all 59 € S
implies that inf S < sup S

(b) If inf S = sup S, then from (a), we see that inf S < sg < sup S = inf S = sy = sup S for all
sop € S. Hence, S contains only one element, namely sg.

[ |
Let S and T be nonempty bounded subsets of R.
(a) Prove if SC T, then inf T < inf S <sup S <sup T .
(b) Prove sup(SUT) = max{sup S, sup T}. Note: In part (b), do not assume S C T
Let S and T be nonempty subsets of R with the following property:
s<tforallseSandteT.
(a) Observe S is bounded above and T is bounded below.
(b) Prove sup S < inf T .
(c) Give an example of such sets S and T where S NT is nonempty.
(d) Give an example of sets S and T where sup S = inf T and SN T is the empty set.
Solution:
(a) S is bounded above by T" and T is bounded below by S. (b) We have that s < sup S and inf T' < ¢
for all s € S,t € T Since s < [ |

Prove that if @ > 0, then there exists n € N such that % <a<n.

Consider a,b € R where a < b. Use Denseness of Q to show there are infinitely many rationals between
a and b.

Let I be the set of real numbers that are not rational; elements of I are called irrational numbers. Prove
if @ < b, then there exists x € I such that a < = < b. Hint: First show {r +v2:7 € Q} C L

Solution:

First we show that {r + V2:re Q}CL Letz=r+ V2 and assume z € Q. Since —r € Q, we have
that o+ (—r) = /2. If x is rational, then x+ (—r) should also be rational. But we've already seen that
\/2 is not rational. Hence, our original assumtion that x is rational was false and {r + V2:re Q}.
If a < b, then a + v2 < b+ v/2 and by the denseness of QinR, we have that there exists a 7 € Q such
that a + V2 < r < b+ /2. This implies a < r — V2 < b. Suppose r — v/2 is rational. Then by the
above, we have that r — V24++V2=reclThisis a contradiction, so r — v/2 must be irrational. Then
letz=r—+v2sothata<z< b, as desired.



14.

15.
16.

Let A and B be nonempty bounded subsets of R, and let A + B be the set of all sums a 4+ b where
a€ Aandbe B.

(a) Prove sup(A + B) = sup A+ sup B. Hint: To show sup A+ supB < sup(A + B), show that for
each b € B, sup(A + B) — b is an upper bound for A, hence sup A < sup(A + B) —b. Then show
sup(A + B)—sup A is an upper bound for B.

(b) Prove inf(A + B) =inf A+inf B.

Solution:
We have that a < sup A for all @ € A and that b < sup B for all b € B. Then (a 4+ b) < sup A + sup
B and since sup (A + B) is the least upper bound, then sup(4 + B) < sup A + sup B.

Since a+b < sup (A+ B), then a < sup(A+ B) —b for each b € B. We have found an upper bound for
A4 and hence, sup A < sup(A + B) — b. This holds for any arbitrary b € B and so sup(A + B)— sup
A is an upper bound for b. Hence, sup B < sup(A + B)— sup A. Thus, sup A + sup B < sup(4 + B)
and we have shown that sup(A + B) = sup A+ sup B [ ]

Chapter 5: The Symbols +oo and —oo

1.

L

Chapter 7: Limits of Sequences

1.

- W

Chapter 8: A Discussion About Proofs

1.

- W



© ® N >

10.

Chapter 9: Limit Theorems for Sequences

1.

>

© ® N o o«

10.
11.
12.
13.
14.
15.
16.
17.
18.

Chapter 10: Monotone Sequences and Cauchy Sequences
1.
2.
3.

e



8.
9.
10.
11.
12.

Chapter 11: Subsequences

1.

- W

ot

© ® N o

10.

Chapter 12: lim sup’s and lim inf’s

1.

- W

o

© © N o

10.
11.
12.
13.
14.



Chapter 14: Series
1.
2.
3.

© 0 N o

10.
11.
12.
13.
14.

Chapter 15: Alternating Series and Integral Tests

1.
2.

oo

© N oo

Chapter 17: Continuous Functions

1.

> W

10



7.
8.
9.
10.
11.
12.
13.
14.
15.

Chapter 18: Properties of Continuous Functions

© 0 N e o WD e

— =
—= O

12.

Chapter 19: Uniform Continuity

R O R L B A

— =
—= O

11



Chapter 20: Limits of Functions
1.
2.
3.

L »®» N @

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Chapter 21: More on Metric Spaces: Continuity

1.

AR

© »®» N @

10.

12



11.
12.
13.
14.

Chapter 22: More on Metric Spaces: Connectedness

1.

S S A o B

—_ = = =
W= o

14.

Chapter 23: Power Series

1. For each of the following power series, find the radius of convergenceand determine the exact interval
of convergence.

(a)
2. Repeat Exercise 23.1 for the following:
(a) X2 v/na”
(b) X =a"
(c) Xa™
3" .2n+1
(@) ¥ 2o

Solution:

(a) We have a,, = /n so then limsup|a,|'/n = limsup |n27| = 1. Thus, 3 =1 =—> R = 1. The
radius of convergence is 1.
For x = —1, we have Y (—1)"+/n which diverges since lim(—1)"y/n # 0.
For « = 1, we have ) \/n which also diverges since lim v/n # 0.
Thus, the interval of convergence is (—1,1).

13



1/n
= limsup |4

nvn

1. RTINS 1
(b) We have a,, = —= so letﬁ—hmbup’W

= 1. Thus, R = 1 and the radius

of convergence is 1.

For x = —1, we have Z(—l)"nlf Since a,, > any1 Vn € N and lim a,, = 0, then by the alternat-
ing series test, this series converges.

For z = 1, we have ) n}/ﬁ Since nbﬁ < # forn >4 and > # converges by Theorem 15.1, then

> ﬁ converges by the comparison test.
Thus, the interval of convergence is [—1, 1].
(c) (' +a?+a25+...).
0 if n is not the result of an integer factorial

We have a,, = )
1 if n = k! for some k € NU {0}

Let 8 = limsup |a,|/™ = limsup |ag|* = limsup(1)# = 1.

For x = —1, Y (—1)™ diverges since lim(—1)™ # 0.
For x = 1, 3. 1™ diverges since lim 1™ # 0.
Thus, the interval of convergence is (—1,1).

© »®» N>

Chapter 24: Uniform Convergence
1.
2. For x € [0,00), let fp(z) = Z.

(a) Find f(z) = lim f,(x).
(b) Determine whether f,, — f uniformly on [0, 1].

(¢) Determine whether f,, — f uniformly on [0, 00).

Solution:

(a) We have lim f,,(x) = lim £ = 0 for z € [0, 00).

14



(b) Let N =1 5o that for all n > N, e > 0 we have that

€

x z 1
o) = Fa)l =7~ 0| = 0 < 5
for all € [0,1]. Hence, f, — f uniformly on [0, 1]

(¢) Suppose by contradiction that f, — f uniformly on [0,00). Then for e = 1, there exists N such
that |f,,(z) — f(x)| <1 for all 2 € [0,00) and n > N. This implies |f,(z) — f(z)| = £ < 1 for all
x € [0,00). But for x = 2n € [0,00), we have that

fal@) = @) =2 =T =91

a contradiction. Hence, f, does not converge uniformly to f on [0, c0).

- w

© »® N & o

10.
11.
12.
13.
14.
15.
16.
17.

Chapter 25: More on Uniform Convergence

1.

- W

ot
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7.
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10.
11.
12.
13.
14.
15.

Chapter 26: Differentiation and Integration of Power Series

1.
2.

oo »

© N oo

Chapter 27: Weierstrass’s Approximation Theorem

1.

> W

16



Chapter 28: Basic Properties of the Derivative
1.
2.
3.

L »®» N @

10.
11.
12.
13.
14.
15.
16.

Chapter 29: The Mean Value Theorem

1.
2.

- W

ot

© »®» N @

10.
11.
12.
13.
14.
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15.
16.
17.
18.

Chapter 30: L’Hospital’s Rule
1.
2.
3.
4

5.
6.
7.

Chapter 31: Taylor’s Theorem
1.
2.
3.

© ® N o

10.
11.
12.

Chapter 32: The Riemann Integral

1.
2.
3.

18



Chapter 33: Properties of the Riemann Integral

1.

- W
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10.
11.
12.
13.
14.
15.

Chapter 34: Fundamental Theorem of Calculus

1.

- W

© »®» N o o

10.
11.
12.

19



Chapter 35: Riemann-Stieltjes Integrals
1.
2.
3.

© 0 N o

10.
11.
12.

Chapter 36: Improper Integrals

1.
2.
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ot
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10.
11.
12.
13.
14.

15.
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Chapter 37: A Discussion of Exponents and Logarithms
1.
2.
3.

L »®» N @

Chapter 38: Continuous Nowhere-Differentiable Functions

1.

- W
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