Elementary Analysis: The Theory of Calculus by Ross Exercise Solutions

Khang Tong

Chapter 1: The Set \mathbb{N} of Natural Numbers

1. Prove $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n

Solution:

<u>Base Case:</u> $1 = \frac{1}{6}(1)(2)(3) = 1$ <u>Inductive Step:</u> Assume that $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ is true for some $n \in \mathbb{N}$. Then,

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2}$$
$$= \frac{1}{6}n(n+1)(2n+1) + \frac{6(n+1)^{2}}{6}$$
$$= \frac{1}{6}(n+1)[n(2n+1) + 6(n+1)]$$
$$= \frac{1}{6}(n+1)[2n^{2} + n + 6n + 6]$$
$$= \frac{1}{6}(n+1)(n+1+1)(2(n+1) + 1)$$

Hence, $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all $n \in \mathbb{N}$

2. Prove $3 + 11 + \dots + (8n - 5) = 4n^2 - n$ for all positive integers n.

Solution:

<u>Base Case</u>: $3 = 4(1)^2 - 1 = 3 \checkmark$ <u>Inductive Step</u>: Assume that $3 + 11 + \dots + (8n - 5) = 4n^2 - n$ for some $n \in \mathbb{N}$. Then,

$$3 + 11 + \dots + (8n - 5) + (8(n + 1) -)5 = 4n^2 - n + (8(n + 1) - 5)$$
$$= 4n^2 + 7n + 3$$
$$= 4(n^2 + 2n + 1) - n - 1$$
$$= 4(n + 1)^2 - (n + 1)$$

Hence, $3 + 11 + \dots + (8n - 5) = 4n^2 - n$ for all $n \in \mathbb{N}$

3. Prove $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ for all postive integers n

Solution:

<u>Base Case:</u> $1^3 = 1^2 \checkmark$

Inductive Step: Assume that $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$ for some $n \in \mathbb{N}$. Note that $\overline{(x+y)^2 = x^2 + 2xy + y^2}$. Then,

$$\begin{aligned} ((1+2+\dots+n)+(n+1))^2 &= (1+2+\dots+n)^2 + 2(1+2+\dots+n)(n+1) + (n+1)^2\\ (inductive hypothesis) &= 1^3+2^3+\dots+n^3+(n+1)(2(1+2+\dots+n)+(n+1))\\ &= 1^3+2^3+\dots+n^3+(n+1)((n)(n+1)+(n+1))\\ &= 1^3+2^3+\dots+n^3+(n+1)^2(n+1)\\ &= 1^3+2^3+\dots+(n+1)^3\end{aligned}$$

Hence, $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ implies that $1^3 + 2^3 + \dots + n^3 + (n+1)^3 = (1 + 2 + \dots + n + (n+1))^2$ and thus, the statement holds for all $n \in \mathbb{N}$

- 4. a.) Guess the formula for $1+3+\cdots+(2n-1)$ by evaluating the sum for n=1,2,3, and 4 [For n=1, the sum is simply 1].
 - **b.**) Prove your formula using mathematical induction.

Solution:

We note that the sums appear to be of the form n^2 . <u>Base Case:</u> $1 = 1^2 \checkmark$

Inductive Step: Assume that $1 + 3 + \cdots + (2n - 1) = n^2$ is true for some $n \in \mathbb{N}$. Then

$$1 + 3 + \dots + (2n - 1) + (2(n + 1) - 1) = n^{2} + (2(n + 1) - 1)$$
$$= n^{2} + 2n + 1$$
$$= (n + 1)^{2}$$

Hence, $1 + 3 + \dots + (2n - 1) = n^2$ for all positive integers n.

_	-	

5. Prove $1 + \frac{1}{2} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$ for all positive integers n.

Solution:

Base Case:
$$1 + \frac{1}{2} = 2 - \frac{1}{2}$$

<u>Base Case:</u> $1 + \frac{1}{2} = 2 - \frac{1}{2}$ \checkmark <u>Inductive Hypothesis:</u> Assume that $1 + \frac{1}{2} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$ is true for some $n \in \mathbb{N}$. Then,

$$1 + \frac{1}{2} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} = 2 - \frac{1}{2^n} + \frac{1}{2^{n+1}}$$
$$= 2 + \frac{1}{2^n} \left(\frac{1}{2} - 1\right)$$
$$= 2 + \frac{1}{2^n} \left(-\frac{1}{2}\right)$$
$$= 2 - \frac{1}{2^{n+1}}$$

Hence, $1 + \frac{1}{2} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$ for all $n \in \mathbb{N}$.

6. Prove $11^n - 4^n$ is divisible by 7 when n is a positive integer.

Solution: <u>Base Case:</u> 11 - 4 = 7(1) ✓

Inductive Step: Assume that $11^n - 4^n$ is divisible by 7 for some $n \in \mathbb{N}$. Then

$$11^{n+1} - 4^{n+1} = 11(11^n) - 11 \cdot 4^n + 11 \cdot 4^n - 4(4^n)$$

(inductive hypothesis) = 11(7m) + 4ⁿ(11 - 4), for some $m \in \mathbb{N}$
= 11(7m) + 4ⁿ(7)
= 7(11m + 4ⁿ)

Hence, $11^{n+1} - 4^{n+1}$ is divisible by 7, which proves that $11^n - 4^n$ is divisible by 7 for all $n \in \mathbb{N}$

7. Prove $7^n - 6n - 1$ is divisible by 36 for all positive integers n.

Solution:

<u>Base case:</u> $0|36\checkmark$ Inductive step: Assume that $7^n - 6n - 1$ is divisible by 36 for some $n \in \mathbb{N}$. Then,

$$7^{n+1} - 6(n+1) - 1 = 7(7^n) - 7(6n) - 7 + 36n$$

= 7(7ⁿ - 6n - 1) + 36n
(inductive hypothesis) = 7(36m) + 36n, for some $m \in \mathbb{N}$
= 36(7m + n)

Hence, $7^n - 6n - 1$ is divisible by 36 for all positive integers n.

8.

9.

10.

11.

12.

Chapter 2: The Set \mathbb{Q} of Rational Numbers

1. Show that $\sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{24}$, and $\sqrt{31}$ are not rational numbers

Solution:

We use the Rational Zeros Theoerem

 $x^2 - 3 = 0 \implies x = \pm 1, \pm 3$, none of which are solutions and thus, $\sqrt{3}$ is not rational. Similarly for the rest.

2. Show $\sqrt[3]{2}$, $\sqrt[7]{5}$, and $\sqrt[4]{13}$ are not rational numbers

Solution:

If $\sqrt[3]{2}$ is rational, $x^3 - 2 = 0 \implies x = \pm 1, \pm 2$, none of which are solutions. Thus, $\sqrt[3]{2}$ is not rational. Similarly for the rest. 3. Show that $\sqrt{2+\sqrt{2}}$ is not a rational number.

Solution:

By the Rational Zeros Theorem, if $\sqrt{2+\sqrt{2}}$ is rational, then $(x^2-2)^2 = 2$ has a rational solution. Note that if x is rational, then so is $x^2 - 2$ and this becomes similar to the proof of 2.

4. Show $\sqrt[3]{5-\sqrt{3}}$ is not a rational number.

Solution:

Proof is similar to (2.3).

5. Show $[3 + \sqrt{2}]^{\frac{2}{2}}$ is not a rational number

Solution:

 $x^3 = (3 + \sqrt{2})^2 \implies (x^3 - 13)^2 = 36(2)$ Note that if x is rational, then $(x^3 - 13)$ is also rational. Proof resolves similar to (2.2).

6. In connection with Example 6, discuss why $4 - 7b^2$ is rational if b is rational.

Solution:

If b is rational, then b can be written as $\frac{m}{n}$, $m, n \in \mathbb{Z}$. Then $4 - 7b^2$ can be written as $\frac{4n^2 - 7m^2}{n^2}$ where $p = 4n^2 - 7m^2$ and $q = n^2$, $p, q \in \mathbb{Z}$ since \mathbb{Z} is closed under addition and multiplication.

Chapter 3: The Set \mathbb{R} of Real Numbers

- 1. (a) Which of the properties A1-A4, M1-M4, DL, O1-O5 fail for \mathbb{N} ?
 - (b) Which of these properties fail for \mathbb{Z} ?

Solution:

- (a) A3 and A4 fails for \mathbb{N} because $0, -a \notin \mathbb{N}$ for all $a \in \mathbb{N}$. M4 fails because $a^{-1} \notin \mathbb{N}$ for all $a \ge 2$.
- (b) M4 fails for \mathbb{Z} because $a^{-1} \notin \mathbb{Z}$ for $a \geq 2$.

2.

3. Prove iv. ((-a)(-b) = ab for all a, b) and v. (ac = bc and $c \neq 0$ imply a = b) of Theorem 3.1

Solution:

$$(-a)(-b) + (-ab) = (-a)(-b) + (-a)b = (-a)[(-b) + b] = (-a)(0) = 0 = ab + (-ab)$$

. From (i), this implies that (-a)(-b) = ab.

$$a \stackrel{M3}{=} a \cdot 1 \stackrel{M4}{=} acc^{-1} \stackrel{M1}{=} (ac)c^{-1} \stackrel{hypothesis}{=} (bc)c^{-1} \stackrel{M1}{=} bcc^{-1} \stackrel{M4}{=} b \cdot 1 \stackrel{M3}{=} bcc^{-1} \stackrel{M4}{=} b \cdot 1 \stackrel{M4}{=} bcc^{-1} \stackrel{M4}{=} b \cdot 1 \stackrel{M4}{=} bcc^{-1} \stackrel{$$

4. Prove v. and vii. of Theorem 3.2

5.

- 6. (a) Prove $|a + b + c| \le |a| + |b| + |c|$ for all $a, b, c \in \mathbb{R}$. Hint: Apply the triangle inequality twice. Do not consider eight cases.
 - (b) Use induction to prove

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| \dots + |a_n|$$

Solution:

(a)

$$\begin{aligned} |a+b+c| &\leq |a+b| + |c| & (triangle inequality) \\ &\leq |a| + |b| + |c| & (triangle inequality) \end{aligned}$$

(b) <u>Base Case:</u> $|a_1| \le |a_1| \checkmark$

Inductive Step: Assume that $|a_1 + a_2 + \cdots + a_n| \leq |a_1| + |a_2| \cdots + |a_n|$ is true for some $n \in \mathbb{N}$. Then,

 $\begin{aligned} |a_1 + a_2 + \dots + a_n + a_{n+1}| &\leq |a_1 + a_2 + \dots + a_n| + |a_{n+1}| & (triangle inequality) \\ &\leq |a_1| + |a_2| + \dots + |a_n| + |a_{n+1}| & (inductive hypothesis) \end{aligned}$

By induction, this proves that $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| \dots + |a_n|$ for all $n \in \mathbb{N}$.

7.

8. Let $a, b \in \mathbb{R}$. Show if $a \leq b_1$ for every $b_1 > b$, then $a \leq b$.

Solution:

Assume towards contradiction that a > b. Then a - b > 0. Set $b_1 = b + \frac{1}{2}(a - b)$ so then $b_1 > b$ for every value of $b \in \mathbb{R}$. Then $a - b_1 = a - b - \frac{1}{2}(a - b) = \frac{1}{2}(a - b) > 0$. Then $a < b_1$, which contradicts the fact that $a \le b_1$. Hence, our assumption is invalid and $a \le b$.

Chapter 4: The Completeness Axiom

1.

2.

3.

4.

5. Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove if sup S belongs to S, then sup $S = \max S$. *Hint:* Your proof should be very short.

Solution:

Since sup $S \ge s_0$ for all $s_0 \in S$ and sup $S \in S$, by definition, sup $S = \max S$.

- 6. Let S be a nonempty bounded subset of R.
 - (a) Prove $\inf S \leq \sup S$. Hint: This is almost obvious; your proof should be short.
 - (b) What can you say about S if $\inf S = \sup S$?

Solution:

(a) We have that for any $s_0 \in S$, $\inf S \leq s_0$ and $s_0 \leq \sup S$. Hence, $\inf S \leq s_0 \leq \sup S$ for all $s_0 \in S$ implies that $\inf S \leq \sup S$

(b) If $\inf S = \sup S$, then from (a), we see that $\inf S \leq s_0 \leq \sup S \implies \inf S = s_0 = \sup S$ for all $s_0 \in S$. Hence, S contains only one element, namely s_0 .

- 7. Let S and T be nonempty bounded subsets of \mathbb{R} .
 - (a) Prove if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
 - (b) Prove $\sup(S \cup T) = \max\{\sup S, \sup T\}$. Note: In part (b), do not assume $S \subseteq T$
- 8. Let S and T be nonempty subsets of R with the following property:
 - $s \leq t$ for all $s \in S$ and $t \in T$.
 - (a) Observe S is bounded above and T is bounded below.
 - (b) Prove sup $S \leq \inf T$.
 - (c) Give an example of such sets S and T where $S \cap T$ is nonempty.
 - (d) Give an example of sets S and T where sup $S = \inf T$ and $S \cap T$ is the empty set.

Solution:

(a) S is bounded above by T and T is bounded below by S. (b) We have that $s \leq \sup S$ and $\inf T \leq t$ for all $s \in S, t \in T$ Since $s \leq \blacksquare$

9.

- 10. Prove that if a > 0, then there exists $n \in N$ such that $\frac{1}{n} < a < n$.
- 11. Consider $a, b \in R$ where a < b. Use Denseness of \mathbb{Q} to show there are infinitely many rationals between a and b.
- 12. Let \mathbb{I} be the set of real numbers that are not rational; elements of \mathbb{I} are called *irrational numbers*. Prove if a < b, then there exists $x \in \mathbb{I}$ such that a < x < b. *Hint:* First show $\{r + \sqrt{2} : r \in \mathbb{Q}\} \subseteq \mathbb{I}$.

Solution:

First we show that $\{r + \sqrt{2} : r \in \mathbb{Q}\} \subseteq \mathbb{I}$. Let $x = r + \sqrt{2}$ and assume $x \in \mathbb{Q}$. Since $-r \in \mathbb{Q}$, we have that $x + (-r) = \sqrt{2}$. If x is rational, then x + (-r) should also be rational. But we've already seen that $\sqrt{2}$ is not rational. Hence, our original assumption that x is rational was false and $\{r + \sqrt{2} : r \in \mathbb{Q}\}$.

If a < b, then $a + \sqrt{2} < b + \sqrt{2}$ and by the denseness of $\mathbb{Q}in\mathbb{R}$, we have that there exists a $r \in \mathbb{Q}$ such that $a + \sqrt{2} < r < b + \sqrt{2}$. This implies $a < r - \sqrt{2} < b$. Suppose $r - \sqrt{2}$ is rational. Then by the above, we have that $r - \sqrt{2} + \sqrt{2} = r \in \mathbb{I}$ This is a contradiction, so $r - \sqrt{2}$ must be irrational. Then let $x = r - \sqrt{2}$ so that a < x < b, as desired.

13.

14. Let A and B be nonempty bounded subsets of \mathbb{R} , and let A + B be the set of all sums a + b where $a \in A$ and $b \in B$.

(a) Prove $\sup(A + B) = \sup A + \sup B$. *Hint:* To show $\sup A + \sup B \le \sup(A + B)$, show that for each $b \in B$, $\sup(A + B) - b$ is an upper bound for A, hence $\sup A \le \sup(A + B) - b$. Then show $\sup(A + B) - \sup A$ is an upper bound for B.

(b) Prove $\inf(A + B) = \inf A + \inf B$.

Solution:

We have that $a \leq \sup A$ for all $a \in A$ and that $b \leq \sup B$ for all $b \in B$. Then $(a + b) \leq \sup A + \sup B$ and since $\sup (A + B)$ is the least upper bound, then $\sup(A + B) \leq \sup A + \sup B$.

Since $a + b \leq \sup(A + B)$, then $a \leq \sup(A + B) - b$ for each $b \in B$. We have found an upper bound for A4 and hence, $\sup A \leq \sup(A + B) - b$. This holds for any arbitrary $b \in B$ and so $\sup(A + B) - \sup A$ is an upper bound for b. Hence, $\sup B \leq \sup(A + B) - \sup A$. Thus, $\sup A + \sup B \leq \sup(A + B)$ and we have shown that $\sup(A + B) = \sup A + \sup B$

15.

16.

Chapter 5: The Symbols $+\infty$ and $-\infty$

1. 2. 3. 4. 5. 6.

Chapter 7: Limits of Sequences

1. 2. 3. 4. 5.

Chapter 8: A Discussion About Proofs

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Chapter 9: Limit Theorems for Sequences

1. 2. 3. 4. 5.6. 7. 8. 9. 10. 11. 12. 13. 14.15.16. 17.18.

Chapter 10: Monotone Sequences and Cauchy Sequences

1.
 2.
 3.
 4.
 5.
 6.
 7.

8.
 9.
 10.
 11.
 12.

Chapter 11: Subsequences

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

Chapter 12: lim sup's and lim inf's

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

 11.

 12.

 13.

 14.

Chapter 14: Series

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

 11.

 12.

 13.

 14.

Chapter 15: Alternating Series and Integral Tests

1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.

Chapter 17: Continuous Functions

1.
 2.
 3.
 4.
 5.
 6.

7.			
8.			
9.			
10.			
11.			
12.			
13.			
14.			
15.			

Chapter 18: Properties of Continuous Functions

1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		

Chapter 19: Uniform Continuity

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

Chapter 20: Limits of Functions

- 1.
- 2.
- 3.
- 4.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.

Chapter 21: More on Metric Spaces: Continuity

- 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
- 10.

11.12.

13.

14.

Chapter 22: More on Metric Spaces: Connectedness

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

 11.

 12.

 13.

 14.

Chapter 23: Power Series

1. For each of the following power series, find the radius of convergence and determine the exact interval of convergence.

(a)

- 2. Repeat Exercise 23.1 for the following:
 - (a) $\sum \sqrt{n}x^n$ (b) $\sum \frac{1}{n\sqrt{n}}x^n$ (c) $\sum x^{n!}$ (d) $\sum \frac{3^n}{\sqrt{n}}x^{2n+1}$

Solution:

(a) We have $a_n = \sqrt{n}$ so then $\limsup |a_n|^1/n = \limsup |n^{\frac{1}{2n}}| = 1$. Thus, $\beta = 1 \implies R = 1$. The radius of convergence is 1. For x = -1, we have $\sum (-1)^n \sqrt{n}$ which diverges since $\lim (-1)^n \sqrt{n} \neq 0$. For x = 1, we have $\sum \sqrt{n}$ which also diverges since $\lim \sqrt{n} \neq 0$. Thus, the interval of convergence is (-1, 1). (b) We have $a_n = \frac{1}{n^{\sqrt{n}}}$ so let $\beta = \limsup \left| \frac{1}{n^{n^{1/2}}} \right|^{1/n} = \limsup \left| \frac{1}{n^{\frac{1}{\sqrt{n}}}} \right| = 1$. Thus, R = 1 and the radius of convergence is 1.

For x = -1, we have $\sum (-1)^n \frac{1}{n^{\sqrt{n}}}$. Since $a_n > a_{n+1} \ \forall n \in \mathbb{N}$ and $\lim a_n = 0$, then by the alternating series test, this series converges.

For x = 1, we have $\sum \frac{1}{n\sqrt{n}}$. Since $\frac{1}{n\sqrt{n}} \le \frac{1}{n^2}$ for $n \ge 4$ and $\sum \frac{1}{n^2}$ converges by Theorem 15.1, then $\sum \frac{1}{n\sqrt{n}}$ converges by the comparison test.

Thus, the interval of convergence is [-1, 1].

(c) $(x^1 + x^2 + x^6 + \dots)$. We have $a_n = \begin{cases} 0 & \text{if } n \text{ is not the result of an integer factorial} \\ 1 & \text{if } n = k! \text{ for some } k \in \mathbb{N} \cup \{0\} \end{cases}$ Let $\beta = \limsup |a_n|^{1/n} = \limsup |a_{k!}|^{\frac{1}{k!}} = \limsup (1)^{\frac{1}{k!}} = 1.$

For x = -1, $\sum (-1)^{n!}$ diverges since $\lim (-1)^{n!} \neq 0$. For x = 1, $\sum 1^{n!}$ diverges since $\lim 1^{n!} \neq 0$. Thus, the interval of convergence is (-1, 1).

| - | | |
|---|--|--|
| | | |
| | | |
| | | |
| | | |

```
•
3.
4.
5.
6.
7.
8.
```

9.

Chapter 24: Uniform Convergence

```
1.
```

- 2. For $x \in [0, \infty)$, let $f_n(x) = \frac{x}{n}$.
 - (a) Find $f(x) = \lim f_n(x)$.
 - (b) Determine whether $f_n \to f$ uniformly on [0, 1].
 - (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

Solution:

(a) We have $\lim f_n(x) = \lim \frac{x}{n} = 0$ for $x \in [0, \infty)$.

(b) Let $N = \frac{1}{\epsilon}$ so that for all $n > N, \epsilon > 0$ we have that

$$|f_n(x) - f(x)| = \left|\frac{x}{n} - 0\right| = \frac{x}{n} < \frac{1}{\frac{1}{\epsilon}} = \epsilon$$

for all $x \in [0,1]$. Hence, $f_n \to f$ uniformly on [0,1]

(c) Suppose by contradiction that $f_n \to f$ uniformly on $[0, \infty)$. Then for $\epsilon = 1$, there exists N such that $|f_n(x) - f(x)| < 1$ for all $x \in [0, \infty)$ and n > N. This implies $|f_n(x) - f(x)| = \frac{x}{n} < 1$ for all $x \in [0, \infty)$. But for $x = 2n \in [0, \infty)$, we have that

$$|f_n(x) - f(x)| = \frac{x}{n} = \frac{2n}{n} = 2 > 1$$

a contradiction. Hence, f_n does not converge uniformly to f on $[0, \infty)$.

Chapter 25: More on Uniform Convergence

- 1. 2. 3. 4.
- 5.
- 6.

| 7. | | | |
|-----|--|--|--|
| 8. | | | |
| 9. | | | |
| 10. | | | |
| 11. | | | |
| 12. | | | |
| 13. | | | |
| 14. | | | |
| 15. | | | |

Chapter 26: Differentiation and Integration of Power Series

| 1. | | | |
|----|--|--|--|
| 2. | | | |
| 3. | | | |
| 4. | | | |
| 5. | | | |
| 6. | | | |
| 7. | | | |
| 8. | | | |

Chapter 27: Weierstrass's Approximation Theorem

1. 2. 3.

- 4.
- 5.
- 6.
- 7.

| 1. | | |
|-----|--|--|
| 2. | | |
| 3. | | |
| 4. | | |
| 5. | | |
| 6. | | |
| 7. | | |
| 8. | | |
| 9. | | |
| 10 | | |
| 11 | | |
| 11. | | |
| 12. | | |
| 13. | | |
| 14. | | |
| 15. | | |
| 16. | | |

Chapter 28: Basic Properties of the Derivative

Chapter 29: The Mean Value Theorem

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

 11.

 12.

 13.

 14.

15.
 16.
 17.
 18.

Chapter 30: L'Hospital's Rule

1. 2. 3. 4. 5. 6. 7.

Chapter 31: Taylor's Theorem

- 1.
- 2.
- 3.
- 4.
- ---
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.

Chapter 32: The Riemann Integral

1. 2. 3. 4.

5.

- 6. 7.
- 8.

Chapter 33: Properties of the Riemann Integral

| 1. | | | |
|-----|--|--|--|
| 2. | | | |
| 3. | | | |
| 4. | | | |
| 5. | | | |
| 6. | | | |
| 7. | | | |
| 8. | | | |
| 9. | | | |
| 10. | | | |
| 11. | | | |
| 12. | | | |
| 13. | | | |
| 14. | | | |
| 15. | | | |

Chapter 34: Fundamental Theorem of Calculus

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

 10.

 11.

 12.

Chapter 35: Riemann-Stieltjes Integrals

- 1.
- 2.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 11.
- 12.

Chapter 36: Improper Integrals

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 11.
- 12.
- 13. 14.
- 15.
- 15.

| - | | | - | |
|----|--|--|---|--|
| 1. | | | | |
| 2. | | | | |
| 3. | | | | |
| 4. | | | | |
| 5. | | | | |
| 6. | | | | |
| 7. | | | | |
| 8. | | | | |
| 9. | | | | |
| | | | | |

Chapter 37: A Discussion of Exponents and Logarithms

Chapter 38: Continuous Nowhere-Differentiable Functions

- 1.
 2.
 3.
 4.
- 5.
- 6.