
Elementary Analysis: The Theory of Calculus by Ross Exercise

Solutions

Khang Tong

Chapter 1: The Set N of Natural Numbers

1. Prove 12 + 22 + · · ·+ n2 = 1
6n(n+ 1)(2n+ 1) for all positive integers n

Solution:
Base Case: 1 = 1

6 (1)(2)(3) = 1

Inductive Step: Assume that 12 + 22 + · · ·+ n2 = 1
6n(n+ 1)(2n+ 1) is true for some n ∈ N. Then,

12 + 22 + · · ·+ n2 + (n+ 1)2 =
1

6
n(n+ 1)(2n+ 1) + (n+ 1)2

=
1

6
n(n+ 1)(2n+ 1) +

6(n+ 1)2

6

=
1

6
(n+ 1)[n(2n+ 1) + 6(n+ 1)]

=
1

6
(n+ 1)[2n2 + n+ 6n+ 6]

=
1

6
(n+ 1)(n+ 1 + 1)(2(n+ 1) + 1)

Hence, 12 + 22 + · · ·+ n2 = 1
6n(n+ 1)(2n+ 1) for all n ∈ N

�

2. Prove 3 + 11 + · · ·+ (8n− 5) = 4n2 − n for all positive integers n.

Solution:
Base Case: 3 = 4(1)2 − 1 = 3

Inductive Step: Assume that 3 + 11 + · · ·+ (8n− 5) = 4n2 − n for some n ∈ N. Then,

3 + 11 + · · ·+ (8n− 5) + (8(n+ 1)−)5 = 4n2 − n+ (8(n+ 1)− 5)

= 4n2 + 7n+ 3

= 4(n2 + 2n+ 1)− n− 1

= 4(n+ 1)2 − (n+ 1)

Hence, 3 + 11 + · · ·+ (8n− 5) = 4n2 − n for all n ∈ N
�

3. Prove 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 for all postive integers n

1



Solution:
Base Case: 13 = 12

Inductive Step: Assume that 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2 for some n ∈ N. Note that

(x+ y)2 = x2 + 2xy + y2. Then,

((1 + 2 + · · ·+ n) + (n+ 1))2 = (1 + 2 + · · ·+ n)2 + 2(1 + 2 + · · ·+ n)(n+ 1) + (n+ 1)2

(inductive hypothesis) = 13 + 23 + · · ·+ n3 + (n+ 1)(2(1 + 2 + · · ·+ n) + (n+ 1))

= 13 + 23 + · · ·+ n3 + (n+ 1)((n)(n+ 1) + (n+ 1))

= 13 + 23 + · · ·+ n3 + (n+ 1)2(n+ 1)

= 13 + 23 + · · ·+ (n+ 1)3

Hence, 13+23+· · ·+n3 = (1+2+· · ·+n)2 implies that 13+23+· · ·+n3+(n+1)3 = (1+2+· · ·+n+(n+1))2

and thus, the statement holds for all n ∈ N
�

4. a.) Guess the formula for 1 + 3 + · · ·+ (2n− 1) by evaluating the sum for n = 1, 2, 3, and 4 [For n = 1,
the sum is simply 1].
b.) Prove your formula using mathematical induction.

Solution:
We note that the sums appear to be of the form n2.
Base Case: 1 = 12

Inductive Step: Assume that 1 + 3 + · · ·+ (2n− 1) = n2 is true for some n ∈ N. Then

1 + 3 + · · ·+ (2n− 1) + (2(n+ 1)− 1) = n2 + (2(n+ 1)− 1)

= n2 + 2n+ 1

= (n+ 1)2

Hence, 1 + 3 + · · ·+ (2n− 1) = n2 for all positive integers n.

�

5. Prove 1 + 1
2 + · · ·+ 1

2n = 2− 1
2n for all positive integers n.

Solution:
Base Case: 1 + 1

2 = 2− 1
2

Inductive Hypothesis: Assume that 1 + 1
2 + · · ·+ 1

2n = 2− 1
2n is true for some n ∈ N. Then,

1 +
1

2
+ · · ·+ 1

2n
+

1

2n+1
= 2− 1

2n
+

1

2n+1

= 2 +
1

2n

(
1

2
− 1

)
= 2 +

1

2n

(
−1

2

)
= 2− 1

2n+1

Hence, 1 + 1
2 + · · ·+ 1

2n = 2− 1
2n for all n ∈ N. �

6. Prove 11n − 4n is divisible by 7 when n is a positive integer.
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Solution:
Base Case: 11− 4 = 7(1)

Inductive Step: Assume that 11n − 4n is divisible by 7 for some n ∈ N. Then

11n+1 − 4n+1 = 11(11n)− 11 · 4n + 11 · 4n − 4(4n)

(inductive hypothesis) = 11(7m) + 4n(11− 4), for some m ∈ N
= 11(7m) + 4n(7)

= 7(11m+ 4n)

Hence, 11n+1 − 4n+1 is divisible by 7, which proves that 11n − 4n is divisible by 7 for all n ∈ N �

7. Prove 7n − 6n− 1 is divisible by 36 for all positive integers n.

Solution:
Base case: 0|36

Inductive step: Assume that 7n − 6n− 1 is divisible by 36 for some n ∈ N. Then,

7n+1 − 6(n+ 1)− 1 = 7(7n)− 7(6n)− 7 + 36n

= 7(7n − 6n− 1) + 36n

(inductive hypothesis) = 7(36m) + 36n, for some m ∈ N
= 36(7m+ n)

Hence, 7n − 6n− 1 is divisible by 36 for all positive integers n. �

8.

9.

10.

11.

12.

Chapter 2: The Set Q of Rational Numbers

1. Show that
√

3,
√

5,
√

7,
√

24, and
√

31 are not rational numbers

Solution:
We use the Rational Zeros Theoerem

x2 − 3 = 0 =⇒ x = ±1,±3, none of which are solutions and thus,
√

3 is not rational.

Similarly for the rest.

�

2. Show 3
√

2, 7
√

5, and 4
√

13 are not rational numbers

Solution:
If 3
√

2 is rational, x3 − 2 = 0 =⇒ x = ±1,±2, none of which are solutions. Thus, 3
√

2 is not rational.

Similarly for the rest.

�
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3. Show that
√

2 +
√

2 is not a rational number.

Solution:
By the Rational Zeros Theroem, if

√
2 +
√

2 is rational, then (x2 − 2)2 = 2 has a rational solution.
Note that if x is rational, then so is x2 − 2 and this becomes similar to the proof of 2.

�

4. Show
3
√

5−
√

3 is not a rational number.

Solution:
Proof is similar to (2.3).

�

5. Show [3 +
√

2]
2
2 is not a rational number

Solution:
x3 = (3 +

√
2)2 =⇒ (x3− 13)2 = 36(2) Note that if x is rational, then (x3− 13) is also rational. Proof

resolves similar to (2.2).

�

6. In connection with Example 6, discuss why 4− 7b2 is rational if b is rational.

Solution:
If b is rational, then b can be written as m

n , m, n ∈ Z. Then 4− 7b2 can be written as 4n2−7m2

n2 where
p = 4n2 − 7m2 and q = n2, p, q ∈ Z since Z is closed under addition and multiplication.

�

Chapter 3: The Set R of Real Numbers

1. (a) Which of the properties A1-A4, M1-M4, DL, O1-O5 fail for N?

(b) Which of these properties fail for Z?

Solution:
(a) A3 and A4 fails for N because 0,−a /∈ N for all a ∈ N. M4 fails because a−1 /∈ N for all a ≥ 2.

(b) M4 fails for Z because a−1 /∈ Z for a ≥ 2.

�

2.

3. Prove iv. ((−a)(−b) = ab for all a, b) and v. (ac = bc and c 6= 0 imply a = b) of Theorem 3.1

Solution:

(−a)(−b) + (−ab) = (−a)(−b) + (−a)b = (−a)[(−b) + b] = (−a)(0) = 0 = ab+ (−ab)

. From (i), this implies that (−a)(−b) = ab.

a
M3
= a · 1 M4

= acc−1
M1
= (ac)c−1

hypothesis
= (bc)c−1

M1
= bcc−1

M4
= b · 1 M3

= b

�
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4. Prove v. and vii. of Theorem 3.2

5.

6. (a) Prove |a + b + c| ≤ |a| + |b| + |c| for all a, b, c ∈ R. Hint: Apply the triangle inequality twice. Do
not consider eight cases.

(b) Use induction to prove

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2| · · ·+ |an|

Solution:
(a)

|a+ b+ c| ≤ |a+ b|+ |c| (triangle inequality)

≤ |a|+ |b|+ |c| (triangle inequality)

(b) Base Case: |a1| ≤ |a1|
Inductive Step: Assume that |a1 + a2 + · · ·+ an| ≤ |a1|+ |a2| · · ·+ |an| is true for some n ∈ N. Then,

|a1 + a2 + · · ·+ an + an+1| ≤ |a1 + a2 + · · ·+ an|+ |an+1| (triangle inequality)

≤ |a1|+ |a2| · · ·+ |an|+ |an+1| (inductive hypothesis)

By induction, this proves that |a1 + a2 + · · ·+ an| ≤ |a1|+ |a2| · · ·+ |an| for all n ∈ N.

�

7.

8. Let a, b ∈ R. Show if a ≤ b1 for every b1 > b, then a ≤ b.

Solution:
Assume towards contradiction that a > b. Then a − b > 0. Set b1 = b + 1

2 (a − b) so then b1 > b for
every value of b ∈ R. Then a− b1 = a− b− 1

2 (a− b) = 1
2 (a− b) > 0. Then a < b1, which contradicts

the fact that a ≤ b1. Hence, our assumption is invalid and a ≤ b.
�

Chapter 4: The Completeness Axiom

1.

2.

3.

4.

5. Let S be a nonempty subset of R that is bounded above. Prove if sup S belongs to S, then sup S =
max S. Hint: Your proof should be very short.

Solution:
Since sup S ≥ s0 for all s0 ∈ S and sup S ∈ S, by definition, sup S = max S.

�
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6. Let S be a nonempty bounded subset of R.

(a) Prove inf S ≤ sup S. Hint: This is almost obvious; your proof should be short.

(b) What can you say about S if inf S = sup S?

Solution:
(a) We have that for any s0 ∈ S, inf S ≤ s0 and s0 ≤ sup S. Hence, inf S ≤ s0 ≤ sup S for all s0 ∈ S
implies that inf S ≤ sup S

(b) If inf S = sup S, then from (a), we see that inf S ≤ s0 ≤ sup S =⇒ inf S = s0 = sup S for all
s0 ∈ S. Hence, S contains only one element, namely s0.

�

7. Let S and T be nonempty bounded subsets of R.

(a) Prove if S ⊆ T , then inf T ≤ inf S ≤ sup S ≤ sup T .

(b) Prove sup(S ∪ T ) = max{sup S, sup T}. Note: In part (b), do not assume S ⊆ T

8. Let S and T be nonempty subsets of R with the following property:
s ≤ t for all s ∈ S and t ∈ T .

(a) Observe S is bounded above and T is bounded below.

(b) Prove sup S ≤ inf T .

(c) Give an example of such sets S and T where S ∩ T is nonempty.

(d) Give an example of sets S and T where sup S = inf T and S ∩ T is the empty set.

Solution:
(a) S is bounded above by T and T is bounded below by S. (b) We have that s ≤ sup S and inf T ≤ t
for all s ∈ S, t ∈ T Since s ≤ �

9.

10. Prove that if a > 0, then there exists n ∈ N such that 1
n < a < n.

11. Consider a, b ∈ R where a < b. Use Denseness of Q to show there are infinitely many rationals between
a and b.

12. Let I be the set of real numbers that are not rational; elements of I are called irrational numbers. Prove
if a < b, then there exists x ∈ I such that a < x < b. Hint: First show {r +

√
2 : r ∈ Q} ⊆ I.

Solution:
First we show that {r +

√
2 : r ∈ Q} ⊆ I. Let x = r +

√
2 and assume x ∈ Q. Since −r ∈ Q, we have

that x+(−r) =
√

2. If x is rational, then x+(−r) should also be rational. But we’ve already seen that√
2 is not rational. Hence, our original assumtion that x is rational was false and {r +

√
2 : r ∈ Q}.

If a < b, then a+
√

2 < b+
√

2 and by the denseness of QinR, we have that there exists a r ∈ Q such
that a +

√
2 < r < b +

√
2. This implies a < r −

√
2 < b. Suppose r −

√
2 is rational. Then by the

above, we have that r −
√

2 +
√

2 = r ∈ I This is a contradiction, so r −
√

2 must be irrational. Then
let x = r −

√
2 so that a < x < b, as desired.

�

13.
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14. Let A and B be nonempty bounded subsets of R, and let A + B be the set of all sums a + b where
a ∈ A and b ∈ B.

(a) Prove sup(A + B) = sup A+ sup B. Hint: To show sup A+ supB ≤ sup(A + B), show that for
each b ∈ B, sup(A + B) − b is an upper bound for A, hence sup A ≤ sup(A + B) − b. Then show
sup(A+B)−sup A is an upper bound for B.

(b) Prove inf(A+B) =inf A+inf B.

Solution:
We have that a ≤ sup A for all a ∈ A and that b ≤ sup B for all b ∈ B. Then (a+ b) ≤ sup A + sup
B and since sup (A+B) is the least upper bound, then sup(A+B) ≤ sup A + sup B.

Since a+ b ≤ sup (A+B), then a ≤ sup(A+B)− b for each b ∈ B. We have found an upper bound for
A4 and hence, sup A ≤ sup(A+ B)− b. This holds for any arbitrary b ∈ B and so sup(A+ B)− sup
A is an upper bound for b. Hence, sup B ≤ sup(A+B)− sup A. Thus, sup A + sup B ≤ sup(A+B)
and we have shown that sup(A+B) = sup A+ sup B �

15.

16.

Chapter 5: The Symbols +∞ and −∞
1.

2.

3.

4.

5.

6.

Chapter 7: Limits of Sequences

1.

2.

3.

4.

5.

Chapter 8: A Discussion About Proofs

1.

2.

3.

4.

5.
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6.

7.

8.

9.

10.

Chapter 9: Limit Theorems for Sequences

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Chapter 10: Monotone Sequences and Cauchy Sequences

1.

2.

3.

4.

5.

6.

7.

8



8.

9.

10.

11.

12.

Chapter 11: Subsequences

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 12: lim sup’s and lim inf’s

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

9



Chapter 14: Series

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Chapter 15: Alternating Series and Integral Tests

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 17: Continuous Functions

1.

2.

3.

4.

5.

6.
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7.

8.

9.

10.

11.

12.

13.

14.

15.

Chapter 18: Properties of Continuous Functions

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Chapter 19: Uniform Continuity

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

11



Chapter 20: Limits of Functions

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chapter 21: More on Metric Spaces: Continuity

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

12



11.

12.

13.

14.

Chapter 22: More on Metric Spaces: Connectedness

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Chapter 23: Power Series

1. For each of the following power series, find the radius of convergenceand determine the exact interval
of convergence.

(a)

2. Repeat Exercise 23.1 for the following:

(a)
∑√

nxn

(b)
∑

1
n
√

nx
n

(c)
∑
xn!

(d)
∑

3n√
n
x2n+1

Solution:

(a) We have an =
√
n so then lim sup |an|1/n = lim sup |n 1

2n | = 1. Thus, β = 1 =⇒ R = 1. The
radius of convergence is 1.
For x = −1, we have

∑
(−1)n

√
n which diverges since lim(−1)n

√
n 6= 0.

For x = 1, we have
∑√

n which also diverges since lim
√
n 6= 0.

Thus, the interval of convergence is (−1, 1).

13



(b) We have an = 1
n
√

n so let β = lim sup
∣∣∣ 1

nn1/2

∣∣∣1/n = lim sup

∣∣∣∣ 1

n
1√
n

∣∣∣∣ = 1. Thus, R = 1 and the radius

of convergence is 1.

For x = −1, we have
∑

(−1)n 1
n
√

n . Since an > an+1 ∀n ∈ N and lim an = 0, then by the alternat-
ing series test, this series converges.

For x = 1, we have
∑

1
n
√

n . Since 1
n
√

n ≤ 1
n2 for n ≥ 4 and

∑
1
n2 converges by Theorem 15.1, then∑

1
n
√

n converges by the comparison test.

Thus, the interval of convergence is [−1, 1].

(c)
(
x1 + x2 + x6 + . . .

)
.

We have an =

{
0 if n is not the result of an integer factorial

1 if n = k! for some k ∈ N ∪ {0}

Let β = lim sup |an|1/n = lim sup |ak!|
1
k! = lim sup(1)

1
k! = 1.

For x = −1,
∑

(−1)n! diverges since lim(−1)n! 6= 0.

For x = 1,
∑

1n! diverges since lim 1n! 6= 0.

Thus, the interval of convergence is (−1, 1).

� �

�

3.

4.

5.

6.

7.

8.

9.

Chapter 24: Uniform Convergence

1.

2. For x ∈ [0,∞), let fn(x) = x
n .

(a) Find f(x) = lim fn(x).

(b) Determine whether fn → f uniformly on [0, 1].

(c) Determine whether fn → f uniformly on [0,∞).

Solution:

(a) We have lim fn(x) = lim x
n = 0 for x ∈ [0,∞).

14



(b) Let N = 1
ε so that for all n > N, ε > 0 we have that

|fn(x)− f(x)| =
∣∣∣x
n
− 0
∣∣∣ =

x

n
<

1
1
ε

= ε

for all x ∈ [0, 1]. Hence, fn → f uniformly on [0, 1]

(c) Suppose by contradiction that fn → f uniformly on [0,∞). Then for ε = 1, there exists N such
that |fn(x)− f(x)| < 1 for all x ∈ [0,∞) and n > N . This implies |fn(x)− f(x)| = x

n < 1 for all
x ∈ [0,∞). But for x = 2n ∈ [0,∞), we have that

|fn(x)− f(x)| = x

n
=

2n

n
= 2 > 1

a contradiction. Hence, fn does not converge uniformly to f on [0,∞).

� �

�

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Chapter 25: More on Uniform Convergence

1.

2.

3.

4.

5.

6.

15



7.

8.

9.

10.

11.

12.

13.

14.

15.

Chapter 26: Differentiation and Integration of Power Series

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 27: Weierstrass’s Approximation Theorem

1.

2.

3.

4.

5.

6.

7.

16



Chapter 28: Basic Properties of the Derivative

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Chapter 29: The Mean Value Theorem

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

17



15.

16.

17.

18.

Chapter 30: L’Hospital’s Rule

1.

2.

3.

4.

5.

6.

7.

Chapter 31: Taylor’s Theorem

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Chapter 32: The Riemann Integral

1.

2.

3.

4.

5.
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6.

7.

8.

Chapter 33: Properties of the Riemann Integral

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Chapter 34: Fundamental Theorem of Calculus

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

19



Chapter 35: Riemann-Stieltjes Integrals

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Chapter 36: Improper Integrals

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

20



Chapter 37: A Discussion of Exponents and Logarithms

1.

2.

3.

4.

5.

6.

7.

8.

9.

Chapter 38: Continuous Nowhere-Differentiable Functions

1.

2.

3.

4.

5.

6.

21


