Bivariate Transformations

Theorem 4.3.1 If XPoisson(θ) and YPoisson(λ) and X and Y are independent, then X+YPoisson(θ+λ).

Theorem 4.3.2 Let X and Y be independent random variables. Let g(x) be a function only of x and h(y) be a function only of y. Then the random variables U=g(X) and V=h(Y) are independent.