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Preface

This set of notes is a synthesis of my notes from when I took MATH 18 at UCSD and notes I prepared for
discussion sections when I TA’d for the course. They are only meant to supplement lecture and in its
current state make no claims to being comprehensive. Topics covered may also vary slightly between
quarters.

I’d recommend before diving into the review portion of the notes to take a look at the Tips for Studying
chapter in the appendix to plan your study.

Happy reviewing and good luck on the final!
Khang Tong

27 February 2023

Note: For convenience, all theorems have been extracted to a handout in the appendix and are referred to
throughout the set of notes without duplication (unless paraphrasing them facilitates the flow of the notes).

i.e. means “that is” and is the Latin abbreviation for “id est”.

e.g. means “for example” and is the Latin abbreviation for “exempli gratia”.
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Chapter 1

Linear Equations

1.1 Our First Row Reduction

Linear Equation: An equation that can be written in the form

a1x1 + a2x2 + · · ·+ anxn = b where ai’s are constants

For example:

� 4x1 + 3x2 =
√
5x3 + 10 linear

� 4x1x2 = sin(x1) not linear

Essentially, to be linear in xi, the only operation you can apply to xi is multiplication by a constant.

Linear System: A collection of one or more linear equations.

Solution Set: The solution set of a linear system in x1, . . . , xn is the collection of all points (s1, . . . , sn)
that satisfy all the equations.

For example:

x1 + x2 = 3
2x1 − x2 = 0

−2 0 2 4

−5

0

5

10

(1 , 2)

x1

x2

x1 + x2 = 3
2x1 − x2 = 0

The intersection (1, 2) comprises the
solution set of the system.
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Question: What can a solution set of a system of linear equations look like?

Answer: A point, ∅ (the empty set), or infinitely many solutions (a line, plane, etc).

An inconsistent system has no solution whereas a consistent system has 1 or infinitely many solutions.

A shorthand way of solving systems of linear equations is to write the system as an augmented matrix.
We can rewrite the system from before as:

coef of x1 coef of x2 constant[ ]
1 1 3
2 −1 0

Row Echlon Form (REF):

1. All leading entries (the first nonzero term in a row, aka, a pivot position) are always to the right of
the leading entry of the row above it.

2. All rows consisting of only zeroes at the bottom.

3. 1 and 2 imply that all entries below the leading entries are 0.

Reduced Row Echlon Form (RREF):

1. Is in REF.

2. The leading entry in each nonzero row is 1 (called leading 1).

3. Each column containing a leading 1 has zeros in all its other entries.
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Example 1.1

Write the system of questions as an augmented matrix and find its RREF.

x2 − x3 = 4 + 2x1

x1 + 2x2 + 3x3 = 13

3x1 + x3 + 1 = 0

Game plan:

1. Start at the left-most leading entry.

2. Either make the leading entry a 1 or switch with a row that already has a 1.

3. Make this the top row if not already.

4. Annihilate all entries below the 1, turning them into 0, via row operations. This is now a pivot
column.

5. Ignoring the rows you already worked on, repeat for rows 2, 3, . . . moving rightwards.

6. Once you arrive at the last pivot column, not work on making each entry above the 1 zero.

7. Repeat moving leftward for each pivot column.

8. Now that the matrix is in RREF, read off the solutions and celebrate with cake.

Solution:
The augmented matrix is −2 1 −1 4

1 2 3 13
3 0 1 −1

 .

R1 ↔ R2

 1 2 3 13
−2 1 −1 4
3 0 1 −1

 R2 7→R2+2R1−−−−−−−−−−−→
R3 7→R3+(−3R1)

1 2 3 13
0 5 5 30
0 −6 −8 −40


R2 7→ 1

5R2−−−−−−−−→

1 2 3 13
0 1 1 6
0 −6 −8 −40


R3 7→R3+6R2−−−−−−−−→

1 2 3 13
0 1 1 6
0 0 −2 −4


R3 7→− 1

2R3−−−−−−−−→

1 2 3 13
0 1 1 6
0 0 1 2


R1 7→R1−3R3−−−−−−−−→
R2 7→R2−R3

1 2 0 7
0 1 0 4
0 0 1 2


R1 7→R1−2R2−−−−−−−−→

1 0 0 −1
0 1 0 4
0 0 1 2

 RREF!

The solution is the point (−1, 4, 2). ■
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Basic variables are variables associated with pivot columns and free variables are variables associated
with non-pivot columns.

Example 1.2

Find the solution of a system of linear equations whose augmented matrix has given RREF:1 0 0 6 0 5
0 0 1 3 0 −1
0 0 0 0 1 2



Solution:

1 0 0 6 0 5
0 0 1 3 0 −1
0 0 0 0 1 2

←→

x1 + 6x4 = 5

x3 + 3x4 = −1
x5 = 2

=⇒



x1 = 5− 6x4

x3 = −1− 3x4

x5 = 2

x2 is free

x4 is free

This is known as the parametric description of the solution set (i.e., basic variables written in terms of
free variables) ■

To wrap up this section, we define the identity matrix as the n× n matrix with ones along the diagonal

and zeros elsewhere

i.e., In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


.

1.2 The Ballad of Inspector Vector

A vector is an element of a vector space (more on that later). For now, we can think of them as a matrix
with one column.

For example: u =

[
3
0

]
, v =

42
0

.
Notation:

� ∈ – “element of”, “in”.

� ̸∈ – “not an element of”, “not in”.

� Rn – the set of all vectors with n entries.

� : – “such that”.
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� Rn =


x1

...
xn

 : x1, . . . , xn ∈ R

 – “the set of all vectors of the form

x1

...
xn

 such that x1, . . . , xn are

real numbers.”

�


1
2
3
4

 ̸∈ R3,

12
3

 ∈ R3.

The linear combination of the set of vectors v1, . . . ,vn is the vector b = c1v1 + · · ·+ cnvn with weights
c1, . . . , cn where the ci’s are real numbers.

We know four different ways of representing a linear system and you should be comfortable translating
between them:{

x1 + 2x2 = 3

2x1 + 3x2 = 4
←→ x1

[
1
2

]
+ x2

[
2
3

]
=

[
3
4

]
←→

[
1 2
2 3

] [
x1

x2

]
=

[
3
4

]
←→

[
1 2 3
2 3 4

]
“system” “vector equation” “matrix equation” “augmented matrix”

The span of a set of vectors, vi, i = 1, . . . , n, is the set of all linear combinations of those vectors.

For example: span


10
0

 ,

01
0

 ,

00
1

 = R3

To determine whether a vector b is in the span of a set of vectors v1, . . . ,vn, build the augmented matrix
[v1, . . . ,vn|b] and determine if the system has a solution.

Example 1.3

Figure 1.1: b is outside the
span of the columns of A,
shown in purple.

Let A =

1 0
0 1
0 0

 , b =

20
1

. Then
1 0 2
0 1 0
0 0 1

←→
1 0
0 1
0 0

x =

20
1

.
Since the system is inconsistent, there does not exist a linear combina-
tion of the columns of A that gives you b. I.e., b is not in the span of
the columns of A.

Solving for the system Ax = b is of particular interest in linear algebra, which we will spend some time on.

Notation:

� A is m× n (Am×n).

� A =
[
a1,a2, . . . ,an

]
, ai ∈ Rm.

� x ∈ Rn, b ∈ Rm.

1. We can think of Ax as representing a linear combination of the columns of A with weights xi, ie,
Ax = x1a1 + · · ·+ xnan = b.

2. We can think of A as a transformation matrix or a mapping of x ∈ Rn 7→ b ∈ Rm.

5



x

A

b

Figure 1.2: Here, we can think of A as transforming a vector from x ∈ R2 to b ∈ R3 via left
multiplication.

Example 1.4

Let A =

1 0 1
0 2 4
1 0 1

 .

a.) Describe the set of all vectors B for which Ax = b has a solution.

b.) Do the columns of A span R3?

Solution: Let b = (a, b, c).

a.) 1 0 1
0 2 4
1 0 1

x1

x2

x3

 =

ab
c

 =⇒

1 0 1 a
0 2 4 b
1 0 1 c

 ∼
1 0 1 a
0 1 2 b/2
0 0 0 c− a




x1 + x3 = a

x2 + 2x3 = b/2

0 = c− a

=⇒


a = b1

b = b2

a = c

Thus, we can solve Ax = b exactly when b is of the form

b1b2
b1

 e.g. :

12
1

.

B =


b1b2
b1

 : b1, b2 ∈ R


b.) No, because there are restrictions on what b can be for there to be a solution. For example,

b =

12
3

 ∈ R3 cannot be a solution.

■

Example 1.5

Suppose A is a matrix which has been reduced to

1 10 0 2
0 0 1 4
0 0 0 0

. Write the solution set of Ax = 0

in parametric vector form.
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Solution: 
x1 = −10x2 − 2x4

x3 = −4x4

x2 free

x4 free

=⇒ x =


−10x2 − 2x4

x2

−4x4

x4

 = x2


−10
1
0
0

+ x4


−2
0
−4
1


Note the difference between parametric description and parametric vector form. ■

Notation:

� ⇐⇒ - if and only if.

� =⇒ - implies.

A homogeneous system is a system of linear equations of the form Ax = 0.

The trivial solution of Ax = 0 is x = 0. We call it trivial because something multiplied by 0 will always
give you 0. Non-trivial solutions are when x ̸= 0.

We say that a set of column vectors of a matrix A are linearly independent if and only if the equation
Ax = 0 has only the trivial solution. Else, they are are linearly dependent.

Let’s try out some true or false questions:

Example 1.6

True or false? Explain.

a. A set of six vectors in R5 must span R5.

b. A set of six vectors in R5 cannot span R5.

c. Any set of three vectors in R4 is linearly independent.

Solution:

Form a matrix A whose columns are the 6 vectors A =

1 . . . 6 1
...
5

. So A is a 5× 6 matrix.

By Thm 1.4, the columns of A span R5 ⇐⇒ A has a pivot in every row. But the maximum number of

pivots = min{# of rows,# of columns}. Since A is 5× 6, it has at most 5 pivots =⇒ a. + b. are false

(since A could have 5 pivots, or it could have less).

In order for a set of 3 vectors in R4 to be linearly independent, putting them into a matrix and row
reducing should yield 3 pivot columns. But, since we can be given any 3 vectors, then we can have less
than 3 pivots and c. is false.

7



For example: The set



1
0
0
0

 ,


0
1
0
0

 ,


0
0
0
1


 is linearly independent since


1 0 0
0 1 0
0 0 0
0 0 1

 has a pivot in every

column. But,



1
0
0
0

 ,


0
1
0
0

 ,


1
1
0
0


 is linearly dependent since


1 0 1
0 1 1
0 0 0
0 0 0

 has only 2 pivots. ■

The definition of linear independence yields these three results which are handy for determining linear
independence:

� A set of vectors is linearly dependent ⇐⇒ at least one vector in the set can be written as a linear
combination of the others.

� The columns of a matrix A are linearly independent ⇐⇒ A has a pivot in every column.

� The columns of A are linearly dependent ⇐⇒ A does not have a pivot in every column.

Example 1.7

Let A =

 1 3 −1
−1 −5 5
4 7 h

. Find all values of h for which the columns of A form a linearly dependent

set.

Solution: The columns of A are dependent ⇐⇒ A does not have a pivot in every column. 1 3 −1
−1 −5 5
4 7 h

 ∼
1 3 −1
0 −2 4
0 −5 h+ 4


∼

1 3 −1
0 1 −2
0 0 h− 6


=⇒ h = 6.

Note: If h = 6, we can see that Ax = 0 has a nontrivial solution.
x1 = −5x3

x2 = 2x3

x3 free

1 such solution: −5

 1
−1
4

+ 2

 3
−5
7

+

−15
6

 =

00
0

. ■
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1.3 Linear Algebra Transformed me into a Math Major

Figure 1.3: A sophisticated use of linear transformations. Credit: Shemp from the UCSD
undergrad math discord

1.3.1 Function Preliminaries

Given an m× n matrix A, we can define a function T by the formula T (x) = Ax.

Note:

� The domain of T is Rn.

� The range of T = {b ∈ Rm : Ax = b is consistent}.

Notation:

� T︸︷︷︸
Name of
function

: Rn︸︷︷︸
domain

−→ Rm︸︷︷︸
codomain
“where the

outputs live”

� x 7→ Ax︸ ︷︷ ︸
formula for T

– “x maps to Ax”

� ImT – The image of T , aka the range of T , aka T (Rn).

� ⊆ – subset of or equal to.

For example: Take the function f(x) = x2.

� f : R→ R

� x 7→ x2

The function f(x) is a real-valued function that takes real numbers as its input and outputs real numbers.
Even though the range of f is nonnegative, we say that the codomain is R since the output is taken from
R. In other words, the range may equal the codomain, or it may be a subset of it. I.e., range ⊆ codomain.
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Example 1.8

If A is a 7× 11 matrix, what do p and q have to be in order to define a function T : Rp → Rq by the
formula T (x) = Ax?

Solution: Two matrices A and B, where A is m× n and B is r × k, are conformable if their dimensions
are suitable for defining some operation. The product AB is defined if n = r and the product AB = C has
dimension m× k.

In other words, in order to multiply two matrices, the number of columns of the first must match the
number of rows of the second. The resulting product has the number of rows of the first matrix and the
number of columns of the second matrix.

Therefore, the product Ax makes sense ⇐⇒ x ∈ R11 and we have that Ax ∈ R7 =⇒ p = 11, q = 7. ■

Check out this page to review computing products of matrices.

Definition 1.9

A function T is a linear transformation if

a. T (0) = 0

b. T (c1u+ c2v) = c1T (u) + c2T (v)

Example 1.10

Suppose span{u1,u2} = R2. Suppose T : R2 → R2 is a linear transformation. Show that if T (u1) = 0
and T (u2) = 0, then for any x ∈ R2, T (x) = 0.

Solution: Let x be any vector in R2. We want to calculate T (x). Since span{u1,u2} = R2, we can find
x1, x2 so that x = x1u1 + x2u2. So then

T (x) = T (x1u1 + x2u2)

= x1T (u1) + x2T (u2) (since T is linear)

= x1 · 0+ x2 · 0
= 0.

■

Example 1.11

Show that the transformation T : R2 → R2 defined by T (x1, x2) = (4x1 − 3x2, |x2|) is not linear.
Hint: Find a specific example to show that at least one of the linearity properties fail.

10
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Solution: Let u =

[
1
1

]
, c = −2. Then

T (cu) = T

([
−2
−2

])
=

[
−2
2

]
cT (u) = −2T

([
1
1

])
= −2

[
1
1

]
=

[
−2
−2

]
=⇒ T (cu) ̸= cT (u)

=⇒ T is not linear.

■

1.3.2 The Standard Matrix of a Linear Transformation

Problem: Given a linear transformation T , find a matrix A so that T (x) = Ax.

Idea: Given T : Rn → Rm and T linear,

T


x1

...
xn


 = T



x1

0
...
0


+ T



0
x2

...
0


+ · · ·+ T



0
0
...
xn




= x1T



1
0
...
0


+ x2T



0
1
...
0


 · · ·+ xnT



0
0
...
1




= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

=
[
T (e1) T (e2) · · · T (en)

]
x

Where ei is a standard unit vector with e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
...
0
1

 In other words, ei is the

ith column of the identity matrix In.

A =
[
T (e1) T (e2) · · · T (en)

]
is called the standard matrix for the linear transformation T . Thus,

we can see that by using the linearity of T and decomposing x into a linear combination of standard unit
vectors, we can find A by figuring out what happens to ei under T .

Example 1.12

Find the standard matrix A for the linear transformation

a.) T : R2 → R2 which reflects vectors over the line x1 = x2 and then stretches the first coordinate
by 3.

b.) T : R3 → R4 with T (x1, x2, x3) = (x1 + x2, x2 + x3, x1 + x3, 0).

Solution:

11



a.) By the previous discussion, A =

[
T

([
1
0

])
T

([
0
1

])]
. A reflection over the line x1 = x2 results in

the vector coordinates switching places and stretching the first coordinate by 3 results in multiplying
the first coordinate by 3. Thus,

T (e1) =

[
0
1

]
T (e2) =

[
3
0

]
=⇒ A =

[
0 3
1 0

]
b.)

T (x) =


x1 + x2

x2 + x3

x1 + x3

0

 = x1


1
0
1
0

+ x2


1
1
0
0

+ x3


0
1
1
0



=⇒ A =


1 1 0
0 1 1
1 0 1
0 0 0


■

A linear transformation T : Rn → Rm is onto if ImT = Rm, and 1-to-1 if T (x1) = T (x2) =⇒ x1 = x2.

Domain Codomain

(a) This function is 1-to-1 because
each input in the domain maps to
exactly one unique output in the
codomain. It is not onto because
there are points in the codomain

that do not get mapped to.

Domain Codomain

(b) This function is onto because for
each output in the codomain, there
exists an input in the domain that
maps to it. It is not 1-to-1 because
there exists an output that gets

mapped to by two distinct inputs.

Domain Codomain

(c) This is not even a function
because there exists an input that

maps to two distinct outputs.

Figure 1.4: Visualization of 1-to-1 and onto functions.

In other words, imagine a blank wall that you throw a bucket of paint at. The paint is your domain and
the wall is your codomain. You are onto if the paint covers the entire wall, i.e., all the paint gets onto the
wall, although perhaps multiple drops of paint cover the same part of the wall. You are 1-to-1 if each drop
of paint gets assigned to a unique point on the wall (no piece of the wall gets two drops of paint), although
you may not cover the entire wall.

12



If T : Rn → Rm is a linear transformation with standard matrix A, then

� T is onto ⇐⇒ Ax = b is consistent for all b ∈ Rm.
⇐⇒ A has a pivot in every row.

� T is 1-to-1 ⇐⇒ Ax = 0 has only the trivial solution
⇐⇒ A has a pivot in every column.

Example 1.13

Let T : R3 → R4 with T (x1, x2, x3) = (x1 + x2, x2 + x3, x1 + x3, 0). Is T onto? If T 1-to-1?

Solution:

A =


1 1 0
0 1 1
1 0 1
0 0 0

 ∼

1 0 0
0 1 0
0 0 1
0 0 0


So, T is 1-to-1 but not onto. ■
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Chapter 2

mAtrIX aLgeBrA

2.1 Matrix Operations, Inverses, IMT, Oh My!

This chapter is where the holy grail theorem of this class makes its introduction – The Invertible Matrix
Theorem (IMT). It’s big and it has a lot of equivalent statements. Make sure you spend some time looking
at this theorem and convince yourself why one statement would imply that another is true. Thorough
understanding of all the statements in this theorem will demonstrate a thorough understanding of a lot of
the concepts in this class.

Warning: The IMT can only be applied to square matrices!

If A is n× n, then the inverse of A, if it exists, denoted A−1, satisfies A−1A = AA−1 = In.

A is invertible if and only if you can show that one of the statements in the IMT is true for A.

From the IMT, an n× n matrix A is invertible ⇐⇒ the RREF of A is In. Thus, to find A−1, assuming
that A is invertible:

1. Form the augmented matrix [A | In].

2. Row reduce this matrix to RREF.

3. A will row reduce to In and the augmented side will become A−1 via your row operations. In other
words, [

A | In
]
∼

[
In | A−1

]
If A does not row reduce to the identity matrix, then A is not invertible.

Example 2.1

Let A =

1 2 3
2 4 5
3 5 6

. Find A−1.

14



Solution:

[
A | I3

]
=

1 2 3 1 0 0
2 4 5 0 1 0
3 5 6 0 0 1


∼

1 0 0 1 −3 2
0 1 0 −3 3 −1
0 0 1 2 −1 0



Thus, A−1 =

 1 −3 2
−3 3 −1
2 −1 0

. ■

Note: If A is invertible and you just want to find the jth column of A−1, row reduce
[
A | ej

]
.

For example: If B is 5× 5 and invertible, to find the 4th column of B−1, row reduce
[
B | e4

]
, i.e.,B


0
0
0
1
0


.

Let A =

[
a b
c d

]
. For 2× 2 matrices, the formula for its inverse, if it exists, is

A−1 =
1

ad− bc

[
d −b
−c a

]

Example 2.2

Find the inverse of A =

[
6 −1
2 1

]
and B =

[
3 −1
6 −2

]
if it exists.

Solution:

A−1 =
1

8

[
1 1
−2 6

]
=

[
1/8 1/8
−1/4 3/4

]
.

For B, note that ad− bc = (3)(−2)− (−1)(6) = 0 =⇒ B has no inverse. ■

T : Rn → Rn is invertible if there exist S : Rn → Rn such that S(T (x)) = T (S(x)) = x.

Example 2.3

Define T : R2 → R2 by T (x) =

[
6x1 − x2

2x1 + x2

]
. Show that T is invertible and find a formula for T−1.

Solution: Recall that T (x) = Ax where A =
[
T (e1) T (e2)

]
=

[
6 −1
2 1

]
.
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From example 2.2, A−1 =

[
1/8 1/8
−1/4 3/4

]
. Hence, we have that T−1(x) = A−1x =

[
1
8x1 +

1
8x2

− 1
4x1 +

3
4x2

]
. ■

Example 2.4

Is A =


1 0 0 3
2 5 10 4
−1 3 6 9
2 1 2 −1

 invertible? Hint: Do not do any row reducing!

Solution: Nope. Since column 3 = 2 · column 2, we have that the columns of A are not linearly
independent. Hence, A is not invertible by the IMT. ■

Example 2.5

Suppose C is an 8× 8 matrix whose columns span R8. What is the span of the rows of C?

Solution: By the IMT, since the columns of C span R8, then CT is also invertible. By the IMT, the
columns of CT span R8. But the columns of CT are the rows of C. Thus, the rows of C span R8. ■

Example 2.6

Suppose B is a 20× 20 matrix with 18 pivots. How many solutions are there to Bx = 0?

Solution: Since B has less than 20 pivots, by the IMT, Bx = 0 must have more than the trivial solution.
So Bx = 0 has infinitely many solutions. ■

16



Chapter 3

Determinants

Our goal in this chapter is the define the determinant of an n× n matrix and study its properties.
Determinants have a nice geometric interpretation which 3Blue1Brown does an amazing job showcasing in
his Essence of Linear Algebra series. In particular, his videos on determinants and spaces are helpful for
visualizing the concepts in this section.

Note: In class, we went over vector spaces before determinants and we will be assuming knowledge of
chapter 4 throughout this chapter. I only numbered this chapter 3 to align with the chapters in the
textbook (I might change this in the future if I decide to make this a more standalone set of notes).

3.1 You are Determinated

Definition 3.1

Let A =

[
a b
c d

]
. The determinant of a 2× 2 matrix is ad− bc.

Recall that the formula for the inverse of a 2× 2 matrix A is given by A−1 =
1

ad− bc

[
d −b
−c a

]
. Note that

this inverse exists ⇐⇒ detA ̸= 0 which is one of the statements of The Invertible Matrix Theorem.

Notation:

� detA – The determinant of A.

� |A| – The determinant of A.

� aij – The ith row and jth column entry of A.

For n > 2, one way determinants are found is by iteratively summing up determinants of smaller subsets of
the matrix A. This process is known as cofactor expansion.

We define the cofactor expansion along the 1st row of A to be:

detA = a11 detA11 − a12 detA12 + a13 detA13 + · · ·+ (−1)1+na1n detA1n

where Aij is the (n− 1)× (n− 1) submatrix obtained by deleting the ith row and jth column of A.
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For example:

A22 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

[
a11 a13
a31 a33

]

where we deleted the entries in pink .

Definition 3.2

Let A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

. The determinant of A is defined to be the cofactor expansion of

A along any row or column.

Restating Thm 3.1 in slightly different words:

We can compute detA using cofactor expansion along any row or column and we always get the same
answer. I.e.,

detA =

n∑
i=1

(−1)i+jaij detAij ←− along jth column

detA =

n∑
j=1

(−1)i+jaij detAij ←− along ith row

An immediate application of this theorem is that we can choose to compute detA in the easiest way
possible.

Example 3.3

Find

∣∣∣∣∣∣∣∣
2 1 3 4
0 −1 6 5
0 0 3 2
0 0 0 7

∣∣∣∣∣∣∣∣.

Solution: We notice that the 4th row has many zeroes, so a lot of terms in its cofactor expansion will be
zero. ∣∣∣∣∣∣∣∣

2 1 3 4
0 −1 6 5
0 0 3 2
0 0 0 7

∣∣∣∣∣∣∣∣ = (−1)4+1 · 0 + (−1)4+2 · 0 + (−1)4+3 · 0 + (−1)4+4 · 7 ·

∣∣∣∣∣∣
2 1 3
0 −1 6
0 0 3

∣∣∣∣∣∣
= 7

∣∣∣∣∣∣
2 1 3
0 −1 6
0 0 3

∣∣∣∣∣∣
= 7

(
(−1)3+3 · 3

∣∣∣∣2 1
0 −1

∣∣∣∣)
= 7 · 3 · (−2)
= −42.

■
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A triangular matrix is a square matrix whose entries above or below the main diagonal are 0. An upper

triangular matrix is a triangular matrix with the form U =


a11

. . . ∗
0

. . .

ann

 and a lower

triangular matrix is a triangular matrix with the form L =


a11

. . . 0

∗ . . .

ann

 where the ∗ and

diagonal entries can be any real number.

So then Thm 3.2 states that the determinant of a triangular matrix is the product of its diagonal entries:

� det



a11

. . . 0

∗ . . .

ann


 = a11 · a22 · · · · · ann.

� det



a11

. . . ∗
0

. . .

ann


 = a11 · a22 · · · · · ann.

Just one more helpful theorem before we get into an example:

From Thm 3.3, we have that if A is an n× n matrix:

� Interchanging 2 rows of A multiplies detA by −1.

� Adding a multiple of one row of A to another row of A does not change detA.

� Multiplying a row of A by k multiples detA by k.

Example 3.4

Suppose

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = −3. What is

∣∣∣∣∣∣
g h i

8d+ 2g 8e+ 2h 8f + 2i
a b c

∣∣∣∣∣∣?

Solution: Let the given matrix be A and the second be B. The operations applied to get from A to B are:

1. Interchange row 1 and 3 =⇒ (−1) detA.

2. 8· row 2 =⇒ 8 · detA.

3. row 2 + 2· row 3 =⇒ no change.

Thus, detB = (−1)(8) detA = 24. ■
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Properties of determinants: Let A and B be n× n matrices,

a.) det(AB) = detA · detB.

b.) det
(
AT

)
= detA.

c.) det
(
A−1

)
=

1

detA
, (if A is invertible).

Note: det(A+B) ̸= detA+ detB.

Example 3.5

Let B =

3 −7 1
2 0 5
1 4 1

 so then detB = −73.

Find:

a.) det
(
BT

)
b.) det

(
B5

)
c.) det

(
B−1

)

Solution:

a.) det
(
BT

)
= −73.

b.) det
(
B5

)
= (−73)5.

c.) det
(
B−1

)
= − 1

73
.

■

3.2 Applications of Determinants

3.2.1 Cramer’s Rule

Cramer’s Rule: If A is an invertible n× n matrix, then for every b ∈ Rn, Ax = b has the unique

solution

x1

...
xn

 where xj =
det(Aj(b))

detA
where Aj(b) is the matrix A except that the jth column is

replaced by b.

Example 3.6

Use Cramer’s Rule to find all α such that the system has a unique solution and describe the solution.

3αx1 − 2x2 = 4

−6x1 + αx2 = 1
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Solution: Let A =

[
3α −2
−6 α

]
. Then,

detA = 3α2 − 12

= 3(α− 2)(α+ 2)

=⇒ The system has a unique solution whenever α ̸= ±2.

Let A1(b) =

[
4 −2
1 α

]
, A2(b) =

[
3α 4
−6 1

]
.

So then,

x1 =
4α+ 2

3(α− 2)(α+ 2)

x2 =
3α+ 24

3(α− 2)(α+ 2)

when α ̸= ±2. ■

3.2.2 Geometric Intuition

a1

a2

Figure 3.1: Area of a parallelogram.

If a1 and a2 are vectors in R2, then the area of the parallelogram determined by a1 and a2 equals∣∣∣det ([a1 a2])
∣∣∣.

Example 3.7

Find the area of the parallelogram with vertices (0, 0), (−1, 2), (−2, 1), and (−3, 3).

Solution:

a1

a2
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∣∣∣∣−2 −1
1 2

∣∣∣∣ = −4 + 1 = −3.

Thus, the area of the parallelogram is the absolute value of of this determinant, which is 3.

Note that due to the geometric properties of parallelograms, we would’ve still gotten the same answer if we
had a2 = (−3, 3) instead. ■

Similarly, in R3, the volume of the parallelepiped determined by the columns of a 3× 3 matrix A equals∣∣∣detA∣∣∣.
Example 3.8

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices (−1, 1, 5),
(2, 0, 3), and (4, 4,−2).

Solution: We have that A =

−1 2 4
1 0 4
5 3 −2

. Since there’s a zero in the second row, lets do cofactor

expansion along the second row:∣∣∣∣∣∣
−1 2 4
1 0 4
5 3 −2

∣∣∣∣∣∣ = −1
∣∣∣∣2 4
3 −2

∣∣∣∣+ 0− 4

∣∣∣∣−1 2
5 3

∣∣∣∣
= −1(−4− 12)− 4(−3− 10)

= 68

=⇒ volume = 68.

■

The determinant of a transformation matrix A is how areas are scaled after the transformation.

Example 3.9

Suppose a transformation doubles the area of a unit square. What is detA, where A is the transfor-
mation matrix for said transformation?

Solution:

Figure 3.2: The determinant of a transformation tells you how areas are scaled after a transformation.
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■

Note: If detA = 0, then areas get “squished” after the transformation.

Example 3.10

Suppose detA = 0 for a 3× 3 transformation matrix A. What are the possible values for dimNulA
and describe what’s going on geometrically during the transformation.

Solution: Since A is a 3× 3 matrix, then the transformation transforms 3D space into 3D space. Since
detA = 0, then there exists some areas that get “squished” or mapped to 0 after the transformation.

Thus, 1 ≤ dimNulA ≤ 3 since there must exist some nonzero vectors that get mapped to zero.

If dimNulA = 1, then there exists a line in R3 such that all vectors on that line get mapped to 0 after the
transformation. By Rank-Nullity, rankA = 2; so R3 space gets squished down into a plane (in R3) since
the column space of A spans a plane.

Figure 3.3: Under the transformation, R3 gets “squished” down into a plane, as shown by the
column space of A. Since the nullity is 1, there exists a line such that all vectors on that line

get mapped to 0 under the transformation.

If dimNulA = 2, then there exists a plane in R3 such that all vectors on that plane gets mapped to 0 after
the transformation. So then R3 space gets squished into a line (since rankA = 1).

Figure 3.4: Under the transformation, R3 gets “squished” down into a line, as shown by the
column space of A. Since the nullity is 2, there exists a plane such that all vectors on that

plane get mapped to 0 under the transformation.

■
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Chapter 4

Vector Spaces

4.1 Are you a Sub.......space?

Idea: R1, R2, R3, . . . are all examples of a more abstract object called a vector space: a collection of
objects called vectors. The more formal definition of a vector space is not as important as the next
definition, but I’ll include it here for completeness, but I won’t dignify it with its own box.

A vector space is a nonempty set V of objects, called vectors, coupled with two operations which we call
addition and multiplication by scalars (real numbers), subject to the ten axioms below. The axioms must
hold for all vectors u, v, and w in V and for all scalars c and d.

1. u+ v ∈ V . (closed under addition)

2. u+ v = v + u. (commutativity)

3. (u+ v) +w = u+ (v +w) (associativity)

4. There exists an additive identity element called 0 ∈ V such that u+ 0 = u.

5. For each u ∈ V , there exists an additive inverse element called −u ∈ V such that u+ (−u) = 0.

6. cu ∈ V . (closed under scalar multiplication)

7. c(u+ v) = cu+ cv. (distributive property for scalars)

8. (c+ d)u = cu+ du (distributive property for vectors)

9. c(du) = (cd)u

10. There exists a multiplicative identity element called 1 such that 1u = u.

More often, we will be more concerned about determining whether something is a subspace of a vector
space. This is because we then only need to check three conditions instead of ten, and conveniently, a
subspace of a vector space is itself a vector space so it’s a much quicker way to find vector spaces.
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Definition 4.1

A subspace of a vector space V is a subset W of V that satisfies these three conditions:

1. 0 ∈W .

2. W is closed under addition (u, v ∈W =⇒ u+ v ∈W ).

3. W is closed under scalar multiplication (c ∈ R, u ∈W =⇒ cu ∈W ).

Note that 3 =⇒ 1 so we really only need to check 2 and 3 .

Examples of nonvector spaces:

� Z = the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
Reason: not closed under scalar multiplication (3 ∈ Z but 1

2 · 3 = 3
2 ̸∈ Z).

� V = the set of polynomials of degree 3.
Reasons: 0 is not a degree 3 polynomial. Also, x3 + (−x3) = 0 ̸∈ V (not closed under addition).

� The 3rd quadrant in R2, i.e.,

{[
x
y

]
: x, y ≤ 0

}
= W .

Reason: e.g.

[
−3
−2

]
∈W but −2

[
−3
−2

]
=

[
6
4

]
̸∈W .

Example 4.2

Let M4×4 be the set of 4× 4 matrices. Determine if the given subset is a subspace of M4×4:

a. W = the set of 4× 4 invertible matrices.

b. S = the set of 4× 4 diagonal matrices.

Solution:

a. No, since 0 ̸∈W .


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 is not invertible.

b. A diagonal matrix is a square matrix whose only nonzero entries are along the main diagonal
(the diagonal that starts at the top-left element and goes down towards the bottom-right).

Yes. The set of matrices in S take on the form


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 , a, b, c, d ∈ R.

1 0 ∈ S because 0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 with a = b = c = d = 0.

2 Let A, B ∈ S. We need to show that A+B ∈ S.

Let A =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 and B =


e 0 0 0
0 f 0 0
0 0 g 0
0 0 0 h

. Then A+B =


a+ e 0 0 0
0 b+ f 0 0
0 0 c+ g 0
0 0 0 d+ h

 ∈ S.

3 Let A ∈ S, k ∈ R. We need to show kA ∈ S.
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kA =


ka 0 0 0
0 kb 0 0
0 0 kc 0
0 0 0 kd

 ∈ S.

■

4.2 All About that Space

Let A be an m× n matrix.

� The null space of A is the set of solutions to Ax = 0.

Notation: NulA = {x ∈ Rn : Ax = 0}.
� The column space of A is the span of its columns.

Notation: ColA = {b ∈ Rm : Ax = b is consistent}.
� The row space of A is the span of its rows.

Notation: RowA = {b ∈ Rn : ATx = b is consistent}.
� Let V be a vector space. Let b1, . . . , bp ∈ V . Let S = {b1, . . . , bp}. S is called a basis for V if

(i.) S is linearly independent.

(ii.) SpanS = V (i.e., S spans V ).

Example 4.3

Given an m× n matrix A:

1. NulA is a subspace of Rn.

2. ColA is a subspace of Rm.

3. RowA is a subspace of Rn.

Example 4.4

Let A =

[
1 2 3 0
0 1 1 −1

]
a. NulA is a subspace of R4.

b. ColA is a subspace of R2.

c. Find a set of vectors that span NulA.

d. Find a nonzero vector in ColA.

Solution:

c.
[
A 0

]
∼

[
1 0 1 2 0
0 1 1 −1 0

]
. So Ax = 0 has solutions of the form:

x1 = −x3 − 2x4

x2 = x4 − x3

x3, x4 free
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=⇒ x = x3


−1
−1
1
0

+ x4


−2
1
0
1



So NulA = Span



−1
−1
1
0

 ,


−2
1
0
1


.

d.

[
1
0

]
∈ ColA. ■

Example 4.5

Let A =

1 3
0 1
2 −1

 .

a. Is b =

21
5

 in ColA?

b. Is c =

[
3
−1

]
in NulA?

Solution:

a.) By definition, b ∈ ColA ⇐⇒ Ax = b is consistent. But,

[
A b

]
∼

1 3 2
0 1 1
0 0 8

 is inconsistent.

Thus, b ̸∈ ColA.

b.) By Definition, c ∈ NulA ⇐⇒ Ac = 0.

Ac = 3

10
2

+−1

 3
1
−1


=

 0
−1
7


̸= 0.

Thus, c ̸∈ NulA.

■
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Example 4.6

Are the following a basis for R2?

a.)

{[
1
0

]
,

[
0
1

]}

b.)

{[
1
1

]
,

[
−2
−2

]}

c.)

{[
1
0

]
,

[
0
1

]
,

[
1
1

]}

Solution: Recall that we need to check that the set of vectors 1. Is linearly independent and 2. Spans R2.

a.) Yes.

b.) No, the vectors are linearly dependent.

c.) No, even though the set spans R2, the set is linearly dependent.

■

Note:
{
e1, . . . , en

}
is called the standard basis for Rn.

Example 4.7

Let V = Span


u10
1

,
v11
0

,
w21
1


 Find a basis for V .

Solution:

Let A =
[
u v w

]
. The RREF of A shows us the dependence relation between the columns of A.

A ∼

1 0 1
0 1 1
0 0 0


We see that col 1 + col 2 = col 3. To find a basis for V , since u+ v = w but u, v are linearly independent,

we can take out w and take the basis to be
{
u,v

}
=


10
1

 ,

11
0

. ■

Essentially, to find a basis for a set of vectors, take their span and start removing “redundant” vectors –
vectors that are linear combinations of the other vectors which when removed, result in the remaining
vectors still spanning the same space.

Another way to put this is to keep only the pivot columns.
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Example 4.8

Let A =

3 −1 0 3
6 −2 3 9
3 −1 2 5

.
a.) Find a basis for NulA.

b.) Find a basis for ColA.

c.) Find a basis for RowA.

Solution: A has RREF =

1 −1/3 0 1
0 0 1 1
0 0 0 0

.
a.) Ax = 0 has solution

x =


1
3x2 − x4

x2

−x4

x4



= x2


1/3
1
0
0

+ x4


−1
0
−1
1

 .

Thus, a basis for NulA is



1/3
1
0
0

 ,


−1
0
−1
1


.

Note: In general, to find a basis for NulA, write down the solution of Ax = 0 in parametric vector
form (PVF). The vectors that appear in the PVF are always a basis for NulA.

b.) We notice that col 1 + col 3 = col 4 and that col 2 = −1/3 col 1.

The RREF of A shows us that the columns of A are linearly dependent. I.e., we can write the 2nd and

4th columns as linear combinations of the 1st and 3rd columns. So, a basis for ColA is


36
3

 ,

03
2

.

Note: In general, to find a basis for ColA, write A in RREF form to see which columns are pivot
columns. Then, take those columns from the original matrix A as your basis. While row operations
preserve pivot columns, they do not preserve column space so you must use the original matrix A.

c.) Approach: A basis for RowA is always given by the set of nonzero rows in the RREF form of A

(" CONTRAST THIS WITH ColA).

Thus, a basis for RowA is rows 1 and 2, i.e.,




1
−1/3
0
1

 ,


0
0
1
1


.

■
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4.3 Dimension

The dimension of a vector space is essentially how many vectors are required to form a basis for that
vector space.

Notation:

� dimRn = n
(
since

{
e1, . . . , en

}
is a basis for Rn

)
.

� dimV = 2 for V = Span


10
1

 ,

11
0

 ,

21
1

 (since col 3 = col 1 + col 2).

General Summary: If A is an m× n matrix:

� dimNulA = # of free variables.
= NullityA

� dimColA = # of pivot columns of A
= RankA
= dimRowA

� dimColA+ dimNulA = # of pivot columns + # of free variables.
= # of columns of A

(this follows from and is equivalent to the Rank-Nullity theorem).

Example 4.9

What is the maximum possible rank of a 10× 14 matrix?

Solution: Since max # of pivots = min
{
# of rows, # of cols

}
, this implies that max rank = 10

(rank ≤ 10). ■

Example 4.10

Suppose the solutions of a homogeneous system of 5 linear equations in 6 unknowns are all multiplies
of one nonzero solution. Will the system have a solution for every possible choice of constants on the
right hand side of the equations?

Solution: Ax = 0 has a nontrivial solution of the form cv. So dimNulA = 1. But then by the
Rank-Nullity theorem, dimNulA+ dimColA = 6 =⇒ dimColA = 5 =⇒ ColA = R5. So that columns
of A span R5 (since we have 5 pivot rows). So yes, Ax = b is consistent for every b ∈ R5. ■
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Example 4.11

Let A =

1 1 2
0 1 1
1 0 1

. Find:
a.) rankA

b.) dimNulA

c.) dimRowA

Solution: A ∼

1 0 1
0 1 1
0 0 0

.
a.) From the RREF of A, we see that there are two pivot columns. Thus rankA = 2. Also note that a

basis for ColA has 2 vectors:


10
1

 ,

11
0

 and so dimColA = rankA.

b.) Ax = 0 =⇒ x =

−x3

−x3

x3

 = x3

−1−1
1

We know from this that a basis for NulA is


−1−1

1

. Thus,

dimNulA = 1.

c.) From Rank-Nullity, since dimRowA+ dimNulA = 3, then dimRowA = 2.

■

4.4 Coordinates

Now we get to see why we learned about basis vectors.

Recall (The Unique Representation Theorem): Let B =
{
v1, . . . ,vp

}
be a basis for some vector space V .

Then if x is in V , then there is exactly one way to write x as a linear combination of v1, . . . ,vp (otherwise,
B would not be a linearly independent set).

Also recall that
{
e1, . . . , en

}
is the standard basis for Rn.

Vocab/Notation:

1) Given x ∈ Rn and if x =


x1

x2

...
xn

, then x = x1e1 + · · ·+ xnen. The numbers x1, . . . , xn are called the

coordinates of x relative to the standard basis.

2) Suppose B =
{
b1, . . . , bn

}
is another basis for Rn. Then by The Unique Representation Theorem,

given any x ∈ Rn, we have x = c1b1 + · · ·+ cnbn for some numbers c1, . . . , cn. The numbers
c1, . . . , cn are called the coordinates of x relative to the basis B.
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Notation: [x]B =


c1
c2
...
cn


3) If B =

{
b1, . . . , bn

}
is a basis for Rn, the matrix PB =

[
b1, . . . , bn

]
is called the change of

coordinate matrix from B to the standard basis. The reason for the name is because
PB [x]B = x, so left multiplication by PB tells you how to write a vector (written in coordinates
relative to the basis B) with respect to the standard basis.

Ever since we first learned about graphing, we’ve thought in terms of the standard basis. The point (1, 2)
we generally think of as going across 1 (1 times e1) and up 2 (2 times e2). However, there are times and
applications where it is more convenient to think in terms of a different basis.

Take for example, the basis B =

{[
1
1

]
,

[
0
1

]}
for R2 and the point x = (1, 2).

0 1 2
0

1

2

Figure 4.1: In blue, we take the standard basis to get to the point (1, 2), which is how we
usually think about it. In olive, we take a different route using the basis vectors from B. Note
that we are still talking about the same point, but we are taking a different path to get there.
Our worldview and way of navigating has shifted. To get to (1, 2) using the basis vectors of B,
note that we have to go 2 in the direction of the first basis vector and −1 in the direction of

the second basis vector. Thus, [x]B =

[
2
−1

]
.

Example 4.12

Let B =

{[
1
−2

]
,

[
5
−6

]}
. B is a basis for R2.

Let x =

[
4
1

]
. Find [x]B, the coordinates of x relative to B.

Solution: We know from our definition above that PB [x]B = x where PB =
[
b1, b2

]
=

[
1 5
−2 −6

]
. We

have two approaches:

a.) Row reduce
[
b1 b2 | x

]
.

b.) PB [x]B = x =⇒ P−1
B x = [x]B.

Using our inverse formula for 2× 2 matrices, we have that P−1
B =

1

4

[
−6 −5
2 1

]
=⇒ [x]B =

[
−29/4
9/4

]
.
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■

Example 4.13

Let B =


11
0

 ,

12
0

 ,

24
6

. B is a basis for R3.

a.) Find PB , the change of coordinate matrix from B to the standard basis.

b.) If [x]B =

−23
1

, find x.

Solution:

a.) PB =

1 1 2
1 2 4
0 0 6

.
b.) x = PB [x]B =

38
6

.
■

Remark: P−1
B is the change of coordinate matrix from the standard matrix to B.

Problem: Let B and D be bases for Rn. How do we find the change of coordinate matrix from B to D?

Let’s work through the standard basis:

B Standard basis D

[x]B 7−−−−−−−−−→
Multiply on
left by PB

x 7−−−−−−−−−→
Multiply on

left by P−1
D

[x]D

Thus, the change of coordinate matrix from B to D is (PD)−1PB .

Notation:
P

D ← B

Example 4.14

Let B =

{[
2
4

]
,

[
6
3

]}
and D =

{[
1
0

]
,

[
−1
1

]}
.

a.) Find
P

D ← B.

b.) If [x]B =

[
2
−1

]
, find [x]D.
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Solution: From the discussion above:

P
D ← B = P−1

D PB

=

[
1 1
0 1

] [
2 6
4 3

]
=

[
6 9
4 3

]
.

Thus, [x]D =
P

D ← B[x]B =

[
3
5

]
.

Let’s check our answers:

Both PB [x]B and PD[x]D should give us x, the coordinates of x relative to the standard basis.

� PB [x]B =

[
2 6
4 3

] [
2
−1

]
=

[
−2
5

]
= x.

� PD[x]D =

[
1 −1
0 1

] [
3
5

]
=

[
−2
5

]
= x.

Additionally,

� [x]B =

[
2
−1

]
means that x = 2b1 − b2 =

[
−2
5

]
.

� [x]D =

[
3
5

]
means that x = 3d1 + 5d2 =

[
−2
5

]
.

■

Note: If V is a vector space with bases B =
{
b1, . . . , bn

}
and D =

{
d1, . . . ,dn

}
, then the first column of

P
D ← B tells us how to write b1 as a linear combination of d1, . . . ,dn, the second column of

P
D ← B tells us

how to write b2 as a linear combination of d1, . . . ,dn, and so on.

Example 4.15

Let B =
{
b1, b2

}
and F =

{
c1, c2

}
be bases for V . If b1 = 3c1 − 6c2 and b2 = 11c1 + 5c2, find

P
F ← B.

Solution: From our note above,
P

F ← B =

[
3 11
−6 5

]
. ■

4.5 Additional Examples in Pn and Mm×n

Notation:

� Pn =
{
a0 + a1x+ · · ·+ anx

n : a0, . . . , an ∈ R
}

– the set of all polynomials of degree ≤ n.
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� Mm×n, Rm×n – the set of all m× n matrices.

Example 4.16

Is B =
{
1, 1− t, 2− 4t+ t2, 6− 18t+ 4t2 − t3

}
a basis for P3?

Polynomial Coordinate vector in R4

1


1
0
0
0



1− t


1
−1
0
0



2− 4t+ t2


2
−4
1
0



6− 18t+ 4t2 − t3


6
−18
4
−1



A consequence of Thm 4.8 is that B is a basis for

P3 ⇐⇒



1
0
0
0

 ,


1
−1
0
0

 ,


2
−4
1
0

 ,


6
−18
4
−1


 is a basis

for R4.

Since


1 1 2 6
0 −1 −4 −18
0 0 1 4
0 0 0 −1

 has 4 pivots, then yes, B

is a basis for P3.

Example 4.17

a.) Take S = the set of 4× 4 diagonal matrices from example 4.2. Find a basis for S. What is the
dimension of S?

b.) A matrix M is called skew-symmetric if MT = −M . Note that a skew-symmetric matrix is
necessarily square. Show that the set of all skew-symmetric matrices, denoted W , is a subspace
of Mn×n. What is a basis for W? What is the dimension of W?

Solution:

a.) The general form for a vector in S is


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 where a, b, c, d are real numbers. Then


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 = a


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ b


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+ c


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

+ d


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

So, a basis for S is



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 and S has

dimension 4.
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b.) (i.) 0T = −0 so 0 ∈W .

(ii.) Let A,B ∈W . Note that for A and B to be in W , A and B must satisfy AT = −A and
BT = −B. Then,

(A+B)T = AT +BT

= −A−B

= −(A+B).

Thus, A+B ∈W .

(iii.) Let k ∈ R. Then,

(kA)T = kAT

= −(kA).

Thus, kA ∈W .

Hence, W is a subspace of Mn×n.

We will show an example basis for W ⊆M3×3 but it can easily be generalized for W ⊆Mn×n. Let

A =

a b c
d e f
g h i

. For A to be skew-symmetric,

AT = −A

=⇒

a d g
b e h
c f i

 =

−a −b −c
−d −e −f
−g −h −i

 .

For the diagonal entries, a = −a =⇒ a = 0. Similarly, e = i = 0. For the nondiagonal entries, we see
that aij = −aji. For example, b = −d. Thus, we have a general form for A: 0 b c

−b 0 f
−c −f 0

 = b

 0 1 0
−1 0 0
0 0 0

+ c

 0 0 1
0 0 0
−1 0 0

+ f

0 0 0
0 0 1
0 −1 0



Thus, a basis for W is


 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 and W has dimension 3.

(This last bit is probably beyond the scope of this class in terms of difficulty, in the sense that you’re
not expected to know how to calculate the number of triangular entries).

Note that we only needed to know what the entries were on the upper triangular part of the matrix
to determine an entire matrix in W , since the diagonals are all 0 and the lower triangular entries are
symmetrical (and negative) with the upper triangular entries.

The number of entries in the upper triangular part with the diagonal is
n(n+ 1)

2
so then the number

of entries in the upper triangular part without the diagonal is
n(n+ 1)

2
− n =

n(n− 1)

2
. Thus, the

dimension of W when W is a subspace of Mn×n is
n(n− 1)

2
.

■
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Chapter 5

Eigenvalues and Eigenvectors

To motivate our study of eigenvalues and eigenvectors, let’s look an an example:

Example 5.1

Let T (x) =

[
6 0
0 −2

]
x. Give a geometric description of the action of T on vectors in R2.

Is it possible to give a simple geometric description of S : R2 → R2 where S(x) =

[
6 16
−1 −4

]
x?

Solution: We have that T (e1) =

[
6
0

]
, T (e2) =

[
0
−2

]
. So T stretches the e1 component of x by 6 and

reflects and stretches the e2 component of x by 2.

For S, we can’t explain with the standard basis. ■

Problem: Given a linear transformation T from Rn → Rn, we want to find a basis where the action of T on
those basis vectors is a simple stretch or reflection.

5.1 Eigenstuff

Definition 5.2

Let A be an n× n matrix. A nonzero vector v is called an eigenvector for A with eigenvalue λ if

Av = λv.

So eigenvectors are vectors such that, when multiplied by A, merely undergo a scalar multiplication after
the transformation, and the amount that the eigenvector is scaled by is called the eigenvalue associated
with that eigenvector.

37



Example 5.3

Let A =

[
3 2
3 8

]
. Is u =

[
1
−1

]
or v =

[
−4
2

]
an eigenvector of A?

Solution:

� Au =

[
3 2
3 8

] [
1
−1

]
=

[
1
−5

]
. u is not an eigenvector of A since Au is not a simple scaling of u.

� Av =

[
3 2
3 8

] [
−4
2

]
=

[
−8
4

]
= 2v. So v is an eigenvector of A with eigenvalue 2.

■

Okay, so given an n× n matrix A, how do we find its eigenvectors?

Well,

Av = λv ⇐⇒ Av − λv = 0

⇐⇒ (A− λIn)v = 0.

(Note that we need to include the identity matrix In when we factor out v so that the matrices remain
conformable). But, by definition, v ̸= 0, which implies that A− λIn is not invertible. Thus,

det(A− λIn) = 0.

So, to find the eigenvectors of A:

1. Set det(A− λIn) = 0 and solve for λ.

2. For each eigenvalue from 1 , solve (A− λIn)v = 0 to find the eigenvectors for λ.

Note: The null space of A− λIn is called the eigenspace corresponding to λ.

Example 5.4

Let A =

[
6 16
−1 −4

]
.

a.) Find the eigenvalues of A.

b.) Find the bases for the eigenspaces of A.

Solution:

a.)

det(A− λI) =

∣∣∣∣6− λ 16
−1 −4− λ

∣∣∣∣
= (6− λ)(−1− λ) + 16

= λ2 − 2λ− 8

= (λ− 4)(λ+ 2)

So, det(A− λI) = 0 ⇐⇒ (λ− 4)(λ+ 2) = 0 ⇐⇒ λ = 4, −2. These are our eigenvalues.

38



b.) For λ1 = 4:

We wish to solve (A− 4I)v = 0, i.e., we need to solve

[
2 16
−1 −8

]
v = 0.

We have that

[
2 16
−1 −8

]
∼

[
1 8
0 0

]
. So then the general solution is v = v2

[
−8
1

]
.

So eigenvectors for λ1 = 4 are all multiples of

[
−8
1

]
.

Thus, a basis for our eigenspace is

{[
−8
1

]}
.

We can check our answer: A

[
−8
1

]
=

[
−32
4

]
= 4

[
−8
1

]
, which is exactly what we’d expect from our

definition of eigenvalues and eigenvectors.

For λ2 = −2:

Solve (A+ 2I)v = 0 =⇒
[
8 16
−1 −2

]
v = 0

=⇒
[
1 2
0 0

]
v = 0.

Thus, our general solution is v = v2

[
−2
1

]
and a basis for our eigenspace is

{[
−2
1

]}
.

■

Remark: This example combines a lot of concepts from previous chapters. Please make sure you take extra
time to digest this example and justify every step we took in our solution.

Some definitions:

� det(A− λIn) is called the characteristic polynomial of A.

� det(A− λIn) = 0 is called the characteristic equation.

� The multiplicity of an eigenvalue of A is the number of times that λ is a root of the characteristic
polynomial.

Also note that 5.1 states that if A is triangular, then the eigenvalues of A are the entries on its main
diagonal.

Example 5.5

Let C =


3 0 0 0 0
0 −1 0 0 0
0 2 0 0 0
0 4 1 3 0
10 5 6 4 2

 .

a.) What is the characteristic polynomial of C?

b.) List its eigenvalues and their multiplicities.

Solution:
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a.) Recall that the determinant of a triangular matrix is the product of its entries along the main
diagonal. Thus, the characteristic polynomial is

(3− λ)(−1− λ)(−λ)(3− λ)(2− λ).

b.)

Eigenvalue Multiplicity

3 2
−1 1
0 1
2 1

■

Example 5.6

Let A =

[
0.95 0.03
0.05 0.97

]
. Analyze the long term behavior of xk+1 = Axk for k = 0, 1, 2, . . . with

x0 =

[
0.6
0.4

]
.

Solution: The idea here is that since eigenvectors are vectors that experience a simple stretching when
transformed by A, we can examine the long term behavior by taking the limit along these paths.

det(A− λI) = λ2 − 1.92λ+ 0.92

= (λ− 1)(λ− 0.92)

=⇒ λ = 1, 0.92

These eigenvalues correspond to v1 =

[
3
5

]
and v2 =

[
1
−1

]
respectively. Since our eigenvectors form a basis

for R2, we can write x0 in terms of eigenvectors.

So then x0 =
[
v1 v2

]
c for weights ci, to be determined:

c =
[
v1 v2

]−1

x0

=

[
0.125
0.225

]
.

So then we have

x1 = Ax0

= A
([

v1 v2

]
c
)

= c1Av1 + c2Av2

= c1v1 + c20.92v2 (since vi’s are eigenvectors of A)

and

x2 = Ax1

= c1Av1 + c2(0.92)Av2

= c1v1 + c2(0.92)
2v2
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In general,
xk = c1v1 + c2(0.92)

kv2.

So the v2 term goes to 0 as k →∞.

Hence, xk tends to cv1 =

[
0.375
0.625

]
. ■

This next example is cool:

Example 5.7

Let A be a 2× 2 matrix.
Let τ = trace (A) = the sum of the diagonal components of A.
Let ∆ = detA.
Find a nice clean formula for the characteristic equation and then use that to find the eigenvalues.

Solution: Let A =

[
a b
c d

]
. So then τ = a+ d and ∆ = ad− bc.

det(A− λI) =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣
= (a− λ)(d− λ)− bc

= λ2 − aλ− dλ+ ad− bc

= λ2 − (a+ d)λ+ (ad− bc)

0 = λ2 − τλ+∆

Solving for λ,

λ =
τ ±
√
τ2 − 4∆

2

■

5.2 Diagonalizable Alley

Some definitions and theorems to get this section started:

Two matrices A and B are called similar if there is some invertible matrix P so that A = PBP−1.

Thm 5.4: If A and B are similar, then A and B have the same eigenvalues.

Definition 5.8

A square matrix is called diagonalizable if it is similar to a diagonal matrix, i.e., A is diagonalizable
⇐⇒ A = PDP−1 for some diagonal matrix D.
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Theorem 5.9: (Numbering doesn’t align with the handout in the appendix)

An n × n matrix A is diagonalizable ⇐⇒ A has a set of n linearly independent eigenvectors

{
v1, . . . ,vn

}
. In this case, A = PDP−1 where P =

[
v1 v2 . . . vn

]
and D =


λ1 0

λ2

. . .

0 λn


where Avi = λivi.

So to diagonalize A, build P by placing all the eigenvectors of A into a matrix so that D contains the
corresponding eigenvalues to those eigenvectors in the same order.

Note:

� P and D are not unique because we can reorder columns of P , multiply it by scalars, etc. But once
you fix P , then D is determined.

� A is diagonalizable ⇐⇒ Rn has a basis consisting of eigenvectors of A.

A is diagonalizable ⇐⇒ the dimensions of the eigenspaces of A add up to n.

Example 5.10

Are the following matrices diagonalizable?

A =

[
3 −9
−2 6

]
B =

0 1 1
1 0 1
1 1 0

 C =

[
5 1
0 5

]

Solution: Let’s do A and C first (confirm on your own that you get the same eigenvalues/eigenvectors):

a.)

Eigenvalue Eigenspace Dimension of eigenspace

0 Span

{[
3
1

]}
1

9 Span

{[
−3
2

]}
1

Since the sum of the dimensions of the eigenspaces is 2, which is the number of columns of A, then A
is diagonalizable.

One possible way to diagonalize A is A = PDP−1 where P =

[
3 −3
1 2

]
and D =

[
0 0
0 9

]
.

c.)

Eigenvalue Eigenspace Dimension of eigenspace

5 Span

{[
1
0

]}
1

C is not diagonalizable since the sum of the dimensions of the eigenspaces is less than the number of
columns of C.
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b.) First, we need to find the eigenvalues and eigenvectors of B.

det(B − λI) =

∣∣∣∣∣∣
−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣
= −λ

∣∣∣∣−λ 1
1 −λ

∣∣∣∣− ∣∣∣∣1 1
1 −λ

∣∣∣∣+ ∣∣∣∣1 −λ
1 1

∣∣∣∣
= −λ(λ2 − 1)− (−λ− 1) + (1 + λ)

...

= −(λ+ 1)(λ− 2)(λ+ 1)

=⇒ λ = −1, 2.

For λ1 = −1:

(B − (−1)I)v = 0 =⇒

1 1 1
1 1 1
1 1 1

v = 0

=⇒

1 1 1
0 0 0
0 0 0

v = 0

=⇒ v = v2

−11
0

+ v3

−10
1

 .

So then the eigenspace is Span


−11

0

 ,

−10
1

.

Similarly, for λ2 = 2, v = v3

11
1

 so the eigenspace is Span


11
1

.

Eigenvalue Eigenspace Dimension of eigenspace

−1 Span


−11

0

 ,

−10
1

 2

2 Span


11
1

 1

B is diagonalizable because the sum of the dimensions of the eigenspaces is 3, which is the number of
columns of B.

Hence, we could have B = PDP−1 where P =

1 −1 −1
1 1 0
1 0 1

 and D =

2 0 0
0 −1 0
0 0 −1

.
■

Tying up some loose ends with some theorems:

� Eigenvectors corresponding to distinct eigenvalues are linearly independent.

� If an n× n matrix A has n distinct eigenvalues, then A is diagonalizable.

Note: The converse is not true (see B in the above example).
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� If A is n× n, then detA is the product of the eigenvalues of A with their multiplicities.

� The sum of the diagonal entries of A is the sum of the eigenvalues of A with their multiplicities.

Example 5.11

B =

0 1 1
1 0 1
1 1 0

. Then λ = −1, 2 where −1 has multiplicity 2.

So then the sum of the diagonal entries of B = 0 = −1(2) + 2(1).
And detB = (−1)(−1)(2) = 2.

Example 5.12

True or false?

a.) If A is diagonalizable, then it is invertible.

b.) If A is invertible, then it is diagonalizable.

Solution:

a.) False. A =

[
0 0
0 0

]
is diagonalizable because it is already a diagonal matrix but A is not invertible.

b.) False. A =

[
1 1
0 1

]
is invertible since detA = 1 ̸= 0 but has only 1 linearly independent eigenvector.

■

Big picture idea: If T : Rn → Rn , with T (x) = A(x), then T has a very simple geometric action on
Rn ⇐⇒ A is diagonalizable.
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Chapter 6

Orthogonality and Least Squares

6.1 I think that issue is entirely orthogonal to the issue here
because the Commonwealth is acknowledging...

To kick off this section let’s define some terms. Let u, v ∈ Rn.

� u and v are called orthogonal if u · v = 0.

u, v orthogonal means that the vectors form a right angle.

� The magnitude of u is its length and we write ||u|| to mean magnitude. We have that
||u|| = √u · u.

� dist (u, v) is the distance between u and v and is equal to ||u− v|| or ||v − u||.

Example 6.1

Let u =

[
2
3

]
and v =

[
−2
4

]
.

a.) Are u and v orthogonal?

b.) What is the distance between u and v?

Solution:

a.) u · v = −4 + 12 = 8 ̸= 0. So, u and v are not orthogonal.

b.) ||u− v|| =
∣∣∣∣∣∣∣∣[ 4
−1

]∣∣∣∣∣∣∣∣ = √
17.

■

So why do we care about orthogonality? Because we can use it to find projections of vectors. The
projection of a vector onto a line, plane, etc,. . . is the point on the line, plane, etc,. . . that is closest to the
vector.
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Figure 6.1: The projection of y onto the vector u can be seen as the portion of y in the
direction of u and is given by what its shadow would be if a light source were directly above y.

Definition 6.2

For two vectors y, u ∈ Rn,

projuy =
y · u
||u||2u =

y · u
u · uu

Read as the projection of the vector y onto the vector u. In other words, the component (or the
amount of y) that is in the direction of u.

Example 6.3

Let y =

[
1
2

]
and u =

[
−6
2

]
. Find a point on Span {u} closest to y.

Solution: We are looking for the projection of y onto the line that u spans. Since y · u = −2 and

||u||2 = 40, then projuy = − 1

20

[
−6
2

]
=

[
3/10
−1/10

]
is the point on Span {u} closest to y. ■

We can find also projections onto planes (and higher dimensions). Let S =
{
v1, . . . ,vp

}
where vi ∈ Rn.

Then S is orthogonal if vi · vj = 0 for i ̸= j.

If a basis for a vector space is orthogonal, then we call it an orthogonal basis.

Suppose W is a subspace of Rn. Then the orthogonal complement of W , denoted W⊥, is the set of all

vectors which are orthogonal to W . I.e., W⊥ =
{
x ∈ Rn : w · x = 0 for all w ∈W

}
.

An orthonormal basis is an orthogonal basis where each vector is a unit vector (i.e., ||vi|| = 1 for all
i ≤ p).

Definition 6.4

Let W ⊆ Rn and
{
u1, . . . ,up

}
be an orthogonal basis for W . Then

projWy =
y · u1

u1 · u1
u1 + · · ·+

y · up

up · up
up

Also,
y = projWy + projW⊥y
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Figure 6.2: The projection of y onto W . Note that y can be decomposed into its orthogonal
components such that y = projWy + projW⊥y.

Example 6.5

Let W = Span


u1 1
1
−1

,
u211
2


. Let y =

51
3

.
Find projWy, i.e., find the orthogonal projection of y onto W .

Solution: First, we should check that u1, u2 are orthogonal:

u1 · u2 = 1 + 1− 2 = 0.

We have, y · u1 = 3, y · u2 = 12, ||u1||2 = 3, ||u2||2 = 6.

So then projWy =
3

3

 1
1
−1

+
12

6

11
2

 =

33
3

 . ■

In the previous example, we relied on the fact that we knew an orthogonal basis for W . But what if W
isn’t orthogonal?

We can make it orthogonal! (Gram-Schmidt)

Example 6.6: A slight detour

Let v1 =

 2
0
−1

, v2 =

 0
−1
0

, and v3 =

20
4

.
a.) Show that the vectors form an orthogonal set but not an orthonormal set.

b.) Make them an orthonormal set.

Solution:

a.)
v1 · v2 = 0 ||v1|| =

√
5

v1 · v3 = 0 ||v2|| = 1

v2 · v3 = 0 ||v3|| = 2
√
5
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All pairwise dot products are zero, so the vectors form an orthogonal set. But, since the magnitudes
of the vectors are not one, then they do not form an orthonormal set.

b.) To make the set orthonormal, we just need all magnitudes to be one.

Let u1 =
1

||v1||
v1 =

1√
5

 2
0
−1


u2 =

1

||v2||
v2 = v2

u3 =
1

||v3||
v3 =

1

2
√
5

20
4

 .

So
{
u1,u2,u3

}
forms an orthonormal set.

■

6.2 Gram-Schmidt

Problem: Given a set of vectors
{
v1, . . . ,vp

}
which is a basis for a vector space V but which do not form

an orthogonal set, how do we construct an orthogonal basis for V ?

Answer: Use Gram-Schmidt.

The Gram-Schmidt Process: Suppose V is a finite dimensional inner product space (don’t need to worry

about what that means for this class) and that
{
v1, . . . ,vp

}
is a basis for V . Then an orthogonal basis for

V ,
{
v1, . . . ,vp

}
, can be found using the following process:

1.) u1 = v1.

2.) u2 = v2 −
v2 · u1

||u1||2
u1.

3.) u3 = v3 −
v3 · u1

||u1||2
u1 −

v3 · u2

||u2||2
u2.

...

p.) up = vp −
vp · u1

||u1||2
u1 − · · · −

vp · up−1

||up−1||2
up−1.

Then
{
u1, . . . ,up

}
forms an orthogonal basis for V .

Example 6.7

Let v1 =

 2
−1
0

, v2 =

 1
0
−1

, v3 =

 3
7
−1

. Note that
{
v1,v2,v3

}
is a basis for R3. Construct an

orthogonal basis for R3.
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Solution: We were told that the vi’s form a basis for R3, but if we weren’t then we should verify that they
do form a basis for R3 before proceeding.

Step 1: u1 = v1 =

 2
−1
0

 .

Step 2: u2 = v2 −
v2 · u1

||u1||2
u1

=

 1
0
−1

− 2

5

 2
−1
0


=

1/52/5
−1

 .

Step 3: u3 = v3 −
v3 · u1

||u1||2
u1 −

v3 · u2

||u2||2
u2

=

 3
7
−1

− (
−1

5

) 2
−1
0

− 22/5

6/5

1/52/5
−1


=

 8/3
16/3
8/3

 .

So then the orthogonal basis we’ve constructed is
 2
−1
0

 ,

1/52/5
−1

 ,

 8/3
16/3
8/3


Note: You can check your work by confirming that the above is mutually orthogonal.

We can make this an orthonormal basis by dividing each vector by its magnitude, i.e., let wi =
ui

||ui||2
for

i = 1, 2, 3. ■

Example 6.8

Expand v1 =

 2
0
−1

, v2 =

20
4

 into an orthogonal basis for R3.

Solution: Note that v1 and v2 are already orthogonal (if they weren’t then you could Gram-Schmidt the
shit outta that bitch). So we just need to find a vector that is orthogonal to v1 and v2.

Notice that the second entry of each vector is 0. So any vector with a nonzero 2nd entry should be outside
the span of v1 and v2.

Although it might be easy to see what an orthogonal vector would be, for funzies, say you can’t easily find
it upon inspection.
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Let v3 =

01
1

. This is our initial “guess” which we will make orthogonal via Gram-Schmidt. Since v1 and

v2 are already orthogonal, then Gram-Schmidt won’t change them. So let u1 = v1 and u2 = v2.

So we just need to find u3.

u3 = v3 −
v3 · u1

||u1||2
u1 −

v3 · u2

||u2||2
u2

=

01
1

− (
−1

5

) 2
0
−1

− 4

20

20
4


=

01
0

 .

Thus,


 2

0
−1

 ,

20
4

 ,

01
0

 forms an orthogonal basis for R3. ■

Example 6.9

LetW = Span


20
4

 ,

01
1

. Let y =

11
0

. Find projWy. Check your work by finding an orthogonal

basis for W⊥ and showing that y = projWy + projW⊥y.

Solution: Notice that

20
4

 ,

01
1

 are not orthogonal. Use Gram-Schmidt to find orthogonal basis vectors

for W (otherwise, our formula for projWy would not apply).

u1 =

20
4

 .

u2 =

11
0

− 4

20

20
4


=

−2/51
1/5

 .
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So then,

projWy =
y · u1

||u1||2
u1 +

y · u2

||u2||2
u2

=
1

10

20
4

+
1

2

−2/51
1/5


=

 0
1/2
1/2

 .

To find an orthogonal basis for W⊥, we need to find all vectors x such that w · x = 0 for all w ∈W . From
ex 1.10, we saw that we only needed to check that the basis vectors map to 0:[

2 0 4 0
0 1 1 0

]
∼

[
1 0 2 0
0 1 1 0

]

=⇒ x = x3

−2−1
1

 .

Thus, W⊥ = Span


−2−1

1

 and therefore, a basis for W⊥ is


w−2−1
1


. So then,

projW⊥y =
y ·w
w ·ww

= −1

2

−2−1
1


=

 1
1/2
−1/2


so that

projWy + projW⊥y =

 0
1/2
1/2

+

 1
1/2
−1/2


=

11
0


= y

as desired. ■

6.3 Least Squares

Problem: What if Ax = b is inconsistent? We can try to find the next best thing; i.e., find x̂ so that Ax̂ is
as close as possible to b. In other words, find Ax̂ in ColA which has a solution, Ax̂ = b̂.

Given W a subspace of Rn and y ∈ Rn, The Best Approximation Theorem tells us that:
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� projWy is the closest point in W to y.

� The distance from y to W is ||y − projWy||.

Example 6.10

Let W = Span


20
4

 ,

01
1

 and y =

11
0

.
a.) Find the point in W which is closest to y.

b.) Find the distance from y to W .

Solution:

a.) The point in W which is closest to y is given by projWy which we found in example 6.9 to be

 0
1/2
1/2

.
b.) The distance from y to W is given by,

||y − projWy|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

1/2
−1/2

∣∣∣∣∣∣
∣∣∣∣∣∣

=
√
3/2.

■

Figure 6.3: Here, we can see that b lies outside the column space of A. Thus, the system Ax = b
is inconsistent. So, we want to find the point on ColA that is as close as possible to b, which we
can denote Ax̂. By The Best Approximation Theorem, we see that projColAb is the point we’re
looking for. Also note then that, by definition 6.4, b− projColAb = b−Ax̂ is orthogonal to ColA.

Since b−Ax̂ is orthogonal to ColA, then AT (b−Ax̂) = 0 =⇒ ATAx̂ = AT b. This is known as the
normal equations for Ax = b.
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We call x̂ a least squares solution since solving for the normal equations is effectively the same as
minimizing the quantity ||b−Ax̂||2 (but you don’t need to know how to do this optimization problem for
this class — just make sure you understand figure 6.3).

To compute the least squares problem:

1.) Compute ATA and AT b.

2.) Either

(a) Form the augmented matrix for the system ATAx̂ = AT b and row reduce or,

(b) If ATA is invertible, then find (ATA)−1 and calculate x̂ = (ATA)−1AT b.

Example 6.11

Find the least squares solutions of Ax = b where A =

0 1
1 1
2 1

 , b =

60
0

.

Solution: We have that

ATA =

[
0 1 2
1 1 1

]0 1
1 1
2 1


=

[
5 3
3 3

]
.

and

AT b =

[
0 1 2
1 1 1

]60
0


=

[
0
6

]
.

So then augment ATAx̂ = AT b: [
5 3 0
3 3 6

]
∼

[
1 0 −3
0 1 5

]
Hence,

x̂ =

[
−3
5

]
.

Note: We say least squares solutions because we can have infinitely many solutions if the columns of A are
dependent (not full rank) which means that ATA is not invertible. But, we are always guaranteed at least
one least square solution. ■

Example 6.12

Suppose you collect some data: given the amount of math problems Khang solved that day, how many
gummy bear snacks does Khang have left in his office to give to his best student? You randomly
sampled 3 days and got points (1, 0), (6, 9), and (4, 2). Find the best fit line to see if you can uncover
an association.
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Solution: The general equation for a line is given by y = mx+ b. If all points fit on a single line, we
would have: 

1m+ b = 0

6m+ b = 9

4m+ b = 2

←→

1 1
6 1
4 1

[
m
b

]
=

09
2


But, the system 1 1 0

6 1 9
4 1 2

 ∼
1 0 0
0 1 0
0 0 1


is inconsistent. There does not exist m and b which gives us a line that fits all 3 points. But, let

A =

1 1
6 1
4 1

 and b =

09
2

. Then the least squares solution gives us:

x̂ = (ATA)−1AT b

=

[
65/38
−99/38

]
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Number of math problems Khang solves
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u
m
b
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m
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b
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Math and gummies

y = 65
38x− 99

38

Figure 6.4: The best fit line for our data found via least squares.

■
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Epilogue

Congratulations, you’ve made it through one of my favorite courses as an undergrad! I hope your journey
was a beautiful one filled with a new-found appreciation for what math can be. Up until this point, all of
your math courses have likely been geared towards just getting you ready for calculus but, there’s a whole
wide world of math out there and there’s probably something for everyone.

If your AP calc teacher destroyed your love for math, I hope this course was the first step towards healing
your soul.

In seriousness, if anything, and even if you never take another math course again, I hope that this course
expanded your perspective and relationship with math. If you struggled, I hope that you improved your
studenting skills to rise to the occasion. If you didn’t do as well as you had hoped, I hope you learned
something about how you can improve next quarter. And if nothing else, I hope you had some amount of
fun and made a new friend in discussion section.

Above all, be proud of your accomplishments and be kind to yourself.

In this chapter I wanted to highlight some courses, both math and non-math you could take after MATH
18. I was an ESYS: Ecology, Behavior, and Evolution major for my first 2 years before switching into
applied math. I also did a double minor in music and linguistics so I was able to take quite a few varied
courses throughout my undergrad.

Whether you’re continuing on your journey through math or are just looking for some interesting electives
to take, here are some classes I took that were either deeply insightful or really fun.

Math

� MATH 120: Complex analysis

Calculus but with complex numbers (learn why eiπ + 1 = 0 and how to plot functions with imaginary
numbers).

� MATH 155: Geometric computer graphics

The math behind how computers represent physical space, simulate lighting, draw curves, etc... The
professor Sam Buss has consulted for Rockstar Games and helped create the physics engine used in
GTA III. Particularly interesting if you’re interested in 3D modeling (eg Blender).

Your projects will look like professional late-80s cgi animations.

� MATH 181: Mathematical statistics

Before this class I thought stats was boring. Now I’m in grad school for it. Highly recommend taking
with David Quarfoot if possible!
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Music

� MUS 137a-c: Jazz theory & improv

Learn jazz from grammy award winning composer and producer Kamau Kenyatta. Spring quarter is
entirely dedicated to recording a jazz album with the entire class.

Linguistics

� LIGN 7/8: Sign language and their cultures / languages and cultures in America

Learning about our world and the people that inhabit it is a lifelong pursuit and these classes
examine our cultural history through a linguistic lens. Also fulfills your DEI requirement.

� LIGN 119: First and second language learning: from childhood through adolescence

Interesting class if you’re interested in learning languages. A lecture towards the end includes real
babies.

Misc

� POLI 160AA: Introduction to policy analysis

Learn the many ways to divide a cake (this was very helpful for a hungry Khang at 8am).

� BIEB 166: Animal behavior & communication

Busy bee, buzz buzz.

I’ll leave you with three quotes from Dr. Larry Fleinhardt, a character from one of my favorite shows –
Numb3rs:

� “The magical element of water penetrates the impenetrable like the sleeping mind dreams the solution
to a problem.”

� “While being young is an accident of time, youth is a permanent state of mind.”

� “You can contemplate silence, but you can never find it.”
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Appendix A

Tips for Studying

I referred to David Quarfoot’s Studenting 101 slides for some parts of this chapter.

Time Management

The most important asset you have is time. Whether it’s time with a loved one, time in the stock market,
or time invested in your education, effective use of your time is the difference between being able to balance
a heavy course load with all the other social things which make college worthwhile and becoming
overwhelmed and shutting down.

Figure out how many days you have left until the final and plan accordingly. It is better to spread 10 hours
of studying over 10 days than it is to cram two 5 hour sessions right before.

Also equally important is how you will allocate time to reviewing various parts of the course.

Setting the Macro Picture and Planning your Study

Let’s say you have 10 days before the final and plan on studying an hour each day. How do you know what
to focus on for each session?

Before you begin delving deep into your review, I recommend taking a moment to create a broad list of
topics for the whole course. Draw out a map if that’s what works for you, mark connections, and fill in
details to determine your weakest areas.

In general, for each concept, you should be able to (starting from shallow to deep knowledge):

� Define what it means and how to do any calculations related to it, if applicable.

� Understand why this concept has to be true and its importance/motivation. Ask yourself: why did
we learn this? What can we do now with this knowledge that we couldn’t before?

� Find connections across other topics in the course.
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For example:

In this class we learned about null spaces. At first, we learned that the null space of a transformation
is the set of all vectors that get mapped to 0. Then, we learned how to find the null space through
some examples.

Diving deeper, we realized that a matrix A is invertible if and only if the dimension of the null space
of A is 0. The null space of A also gives us information about whether the columns of A are linearly
independent and about the value of its determinant.

An application of the null space we saw is that we used it to define what an eigenspace is so that we
could find eigenvectors of A which we then used to determine if A was diagonalizable. We also found
that if the null space of A includes only the zero vector, then ATA is invertible and so we can find a
unique least-squares solution for Ax = b.

As you can see, just going down the rabbit hole of one concept led us to find connections to every single
chapter we went over. This only works if you have a solid understanding of concepts from this class and so
doing this exercise will uncover areas where your conceptual foundations are weak which you can then
target during your study sessions.

Once you have an idea of which topics you should spend your time on, how should you study those topics?
The best way to get better at math is to do math so, keep the review portion as brief as necessary and do
problems.

If your professor posts suggested practice problems, work on those first. If they think that the concepts
presented in those problems are worth doing, then it’s likely that they’ll show up in some form on the final.

Also, rework key homework problems without context. Knowing which section a homework problem comes
from can often give you hints on which concepts or techniques to apply but, on the final, you won’t have
that context.

Misc

Lastly, a few days before the final, attend to factors that affect performance:

� Sleep: I don’t think it really needs to be said how important sleep is for your brain. Allow your
subconscious mind to form connections and soak in your studying by giving it enough rest.

� Nutrition: A well-fed brain is a happy brain that’s more willing to focus.

� Mental health: College is hard and so is life. Things understandably get in the way which can
bring us down. Realize that one exam does not define who you are. Try to do what you can to attend
to personal matters so that you can be at your best on exam day, but also be forgiving of yourself if
things don’t go as planned. Life is messy and inelegant and you’re allowed to be imperfect.

Side note: as cliché as it might sound, confidence does play a big role on exam day. Have faith that
on exam day, you’ve done all that you could to prepare and do your best.

58



Appendix B

Theorem Handout

These theorems are ripped directly from our textbook for convenient referencing. You by no means need to
have these memorized! (Many of these you’ll end up internalizing anyways since they just state more
explicitly concepts you should have a solid understanding of and because you use them so often, like Thm
1.4 or the IMT). As long as you are able to understand the theorems and how you might use them to
answer a T/F problem or help with a computational problem then you’ll be more than set.

Theorem 1.1. Each matrix is row equivalent to one and only one reduced echelon matrix.

Theorem 1.2 (Existence and Uniqueness). A linear system is consistent if and only if the rightmost
column of the augmented matrix is not a pivot column.

If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are
no free variables, or (ii) infinitely many solutions, when there is at least one free variable.

Theorem 1.3. If A is an m× n matrix, with columns a1, . . . ,an, and if b is in Rm, the matrix equation

Ax = b

has the same solution set as the vector equation

x1a1 + · · ·+ xnan = b

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

[a1, . . . ,an|b].

Theorem 1.4. Let A be an m× n matrix. Then the following statements are logically equivalent. That is,
for a particular A, either they are all true statements or they are all false.

a. For each b ∈ Rm, the equation Ax = b has a solution.

b. Each b ∈ Rm is a linear combination of the columns of A.

c. The columns of A span Rm.

d. A has a pivot in every row.

Theorem 1.5. If A is an m× n matrix, u and v are vectors in Rn, and c is a scalar, then:

a. A(u+ v) = Au+Av.

b. A(cu) = c(Au)
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Theorem 1.6. Suppose the equation Ax = b is consistent for some b, and let p be a solution. Then the
solution set of Ax = b is the set of all vectors of the form w = p+ vh where vh is any solution of the
homogeneous equation Ax = 0.

Theorem 1.7 (Characterization of Linearly Dependent Sets). An indexed set S = {v1, . . . ,vp} of two or
more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of
the others. In fact, if S is linearly dependent and v1 ̸= 0, then some vj (with j > 1) is a linear combination
of the preceding vectors v1, . . . ,vj−1.

Theorem 1.8. If a set contains more vectors than there are entries in each vector, then the set is linearly
dependent. That is, any set {v1, . . . ,vp} in Rn is linearly dependent if p > n.

Theorem 1.9. If a set S = {v1, . . . ,vp} in Rn contains the zero vector, then the set is linearly dependent.

Theorem 1.10. Let T : Rn → Rm be a linear transformation. Then there exists a unique matrix A such
that

T (x) = Ax for all x in Rn.

In fact, A is the m× n matrix whose jth column is the vector T (ej) where ej is the jth column of the
identity matrix in Rn:

A = [T (e1), . . . , T (en)]

Theorem 1.11. Let T : Rn → Rm be a linear transformation. Then T is one-to-one if and only if the
equation T (x) = 0 has only the trivial solution.

Theorem 1.12. Let T : Rn → Rm be a linear transformation, and let A be the standard matrix for T .
Then:

a. T maps Rn onto Rm if and only if the columns of A span Rm.

b. T is one-to-one if and only if the columns of A are linearly independent.

Theorem 2.1. Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A+B = B +A

b. (A+B) + C = A+ (B + C)

c. A+ 0 = A

d. r(A+B) = rA+ rB

e. (r + s)A = rA+ sA

f. r(sA) = (rs)A

Theorem 2.2. Let A be an m× n matrix, and let B and C have sizes for which the indicated sums and
products are defined.

a. A(BC) = (AB)C (associative law of multiplication)

b. A(B + C) = AB +AC (left distributive law)

c. (B + C)A = BA+ CA (right distributive law)

d. r(AB) = (rA)B = A(rB) for any scalar r

e. ImA = A = AIn (identity for matrix multiplication)

Theorem 2.3. Let A and B denote matrices whose sizes are appropriate for the following sums and
products.

a. (AT )T = A
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b. (A+B)T = AT +BT

c. For any scalar r, (rA)T = rAT

d. (AB)T = BTAT

Theorem 2.4. Let A =

[
a b
c d

]
. If ad− bc ̸= 0, then A is invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
If ad− bc = 0, then A is not invertible.

Theorem 2.5. If A is an invertible n× n matrix, then for each b ∈ Rn, the equation Ax = b has the
unique solution x = A−1b.

Theorem 2.6.

a. If A is an invertible matrix, then A−1 and invertible and

(A−1)−1 = A

b. If A and B are n× n invertible matrices, then so is AB.

(AB)−1 = B−1A−1

c. If A is an invertible matrix, then so is AT

(AT )−1 = (A−1)T

Theorem 2.7. An n× n matrix A is invertible if and only if A is row equivalent to In, and in this case,
any sequence of elementary row operations that reduces A to In also transforms In into A−1.

Theorem 2.8 (The Invertible Matrix Theorem). Let A be a square n× n matrix. Then the following
statements are equivalent. That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix

b. A is row equivalent to the n× n identity matrix.

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x 7→ Ax is one-to-one.

g. The equation Ax = b has at least one solution for each b ∈ Rn.

h. The columns of A span Rn.

i. The linear transformation x 7→ Ax maps Rn onto Rn.

j. There is an n× n matrix C such that CA = I.

k. There is an n× n matrix D such that AD = I.

l. AT is an invertible matrix.

m. The columns of A form a basis of Rn.
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n. ColA = Rn.

o. dimColA = n

p. rankA = n.

q. NulA = {0}.

r. dimNulA = 0.

s. The number 0 is not an eigenvalue of A.

t. The determinant of A is not zero.

A linear transformation T : Rn → Rn is said to be invertible if there exists a function S : Rn → Rn such
that

S(T (x)) = x for all x ∈ Rn (B.1)

T (S(x)) = x for all x ∈ Rn (B.2)

The next theorem shows that if such an S exists, it is unique and must be a linear transformation. We call
S the inverse of T and write it as T−1.

Theorem 2.9. Let T : Rn → Rn be a linear transformation and let A be the standard matrix for T . Then
T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by
S(x) = A−1x is the unique function satisfying equations B.1 and B.2.

Given A = [aij ], the (i, j)-cofactor of A is the number Cij given by

Cij = (−1)i+j detAij (B.3)

Theorem 3.1. The determinant of an n× n matrix A can be computed by a cofactor expansion across
any row or down any column. The expansion across the ith row using the cofactors in B.3 is

detA = ai1Ci1 + ai2Ci2 + . . .+ ainCin

The cofactor expansion down the jth column is

detA = a1jC1j + a2jC2j + . . .+ anjCnj

Theorem 3.2. If A is a triangular matrix, then detA is the product of the entries on the main diagonal of
A.

Theorem 3.3 (Row Operations). Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B, then detB = detA.

b. If two rows of A are interchanged to produce B, then detB = −detA.

c. If one row of A is multiplied by k to produce B, then detB = k · detA.

Theorem 3.4. A square matrix A is invertible if and only if detA ̸= 0.

Theorem 3.5. If A is an n× n matrix, then detAT = detA.

Theorem 3.6 (Multiplicative Property). If A and B are n× n matrices, then detAB = (detA)(detB).

Theorem 3.7 (Cramer’s Rule). Let A be an invertible n× n matrix. For any b ∈ Rn, the unique solution
x of Ax = b has entries given by

xi =
detAi(b)

detA
, i = 1, 2, . . . , n
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Theorem 3.8 (An Inverse Formula). Let A be an invertible n× n matrix. Then

A−1 =
1

detA
adjA

Theorem 3.9. If A is a 2× 2 matrix, the area of the parallelogram determined by the columns of A is
|detA|. If A is a 3× 3 matrix, the volume of the parallelepiped determined by the columns of A is |detA|.

Theorem 3.10. Let T : R2 → R2 be the linear transformation determined by a 2× 2 matrix A. If S is a
parallelogram in R2, then

{area of T (S)} = |detA| · {area of S}
If T is determined by a 3× 3 matrix A, and if S is a parallelepiped in R3, then

{volume of T (S)} = |detA| · {volume of S}

Theorem 4.1. If v1, . . . ,vp are in a vector space V , then Span{v1, . . .vp} is a subspace of V .

Theorem 4.2. The null space of an m× n matrix A is a subspace of Rn. Equivalently, the set of all
solutions to a system of Ax = 0 of m homogeneous linear equations in n unknowns is a subspace of Rn.

Theorem 4.3. The column space of an m× n matrix A is a subspace of Rm.

Theorem 4.4. An indexed set {v1, . . . ,vp} of two or more vectors, with v1 ̸= 0, is linearly dependent if
and only if some vj (with j > 1) is a linear combination of the preceding vectors v1, . . . ,vj−1.

Theorem 4.5 (The Spanning Set Theorem). Let S = {v1, . . .vp} be a set in V , and let H =
Span{v1, . . . ,vp}.

a. If one of the vectors in S – say, vk – is a linear combination of the remaining vectors in S, then the
set formed from S by removing vk still spans H.

b. If H ̸= {0}, some subset of S is a basis for H.

Theorem 4.6. The pivot columns of a matrix A form a basis for ColA

Theorem 4.7 (The Unique Representation Theorem). Let B = {b1, . . . , bn} be a basis for a vector space
V . Then for each x in V , there exists a unique set of scalars c1, . . . , cn such that

x = c1b1 + · · ·+ cnbn

Theorem 4.8. Let B = {b1, . . . , bn} be a basis for a vector space V . Then the coordinate mapping
x 7→ [x]B is a one-to-one linear transformation from V onto Rn.

Theorem 4.9. If a vector space V has a basis B = {b1, . . . , bn}, then any set in V containing more than n
vectors must be linearly dependent.

Theorem 4.10. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly
n vectors.

Theorem 4.11. Let H be a subspace of a finite-dimensional vector space V . Any linearly independent set
in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

dimH ≤ dimV.

Theorem 4.12 (The Basis Theorem). Let V be a p-dimensional vector space, p ≥ 1. Any linearly
independent set of exactly p elements in V is automatically a basis for V . Any set of exactly p elements
that spans V is automatically a basis for V .

Theorem 4.13. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in
echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.
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Theorem 4.14 (Rank-Nullity). The dimensions of the column space and the row space of an m× n
matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A
and satisfies the equation

rankA+ dimNulA = n

Theorem 4.15. Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of a vector space V . Then there is a

unique n× n matrix
P

C ← B such that

[x]C =
P

C ← B [x]B

The columns of
P

C ← B are the C-coordinate vectors of the vectors in the basis B. That is,

P
C ← B =

[
[b1]C · · · [bn]C

]
Theorem 5.1. The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 5.2. If v1, . . . ,vr are the eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr of an
n× n matrix A, then the set {v1, . . . ,vr} is linearly independent.

Theorem 5.3 (Properties of Determinants). Let A and B be n× n matrices.

a. A is invertible if and only if detA ̸= 0.

b. detAB = (detA)(detB).

c. detAT = detA.

d. If A is triangular, then detA is the product of the entries on the main diagonal of A.

e. A row replacement operation on A does not change the determinant. A row interchange changes the
sign of the determinant. A row scaling also scales the determinant by the same scalar factor.

Theorem 5.4. If n× n matrices A and B are similar, then they have the same characteristic polynomial
and hence the same eigenvalues (with the same multiplicities).

Theorem 5.5 (The Diagonalization Theorem). An n× n matrix A is diagonalizable if and only if A has n
linearly independent eigenvectors.

In fact, A = PDP−1, with D a diagonal matrix, if and only if the columns of P are n linearly independent
eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively,
to the eigenvectors in P .

Theorem 5.6. An n× n matrix with n distinct eigenvalues is diagonalizable.

Theorem 5.7. Let A be an n× n matrix whose distinct eigenvalues are λ1, . . . , λp.

a. For 1 ≤ k ≤ p, the dimension of the eigenspace for for λk is less than or equal to the multiplicity of
the eigenvalue λk.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n,
and this happens if and only if (i) the characteristic eigenspace for each λk equals the multiplicity of
λk.

c. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to λk for each k, then the
total collection of vectors in the sets B1, . . . ,Bp forms an eigenvector basis for Rn.

Theorem 5.8. If A = PDP−1, then Ak = PDkP−1.

Theorem 6.1. Let u,v, and w be vectors in Rn, and let c be a scalar. Then
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a. u · v = v · u

b. (u+ v) ·w = u ·w + v ·w

c. (cu) · v = c(u · v) = u · (cv)

d. u · u ≥ 0, and u · u = 0 if and only if u = 0

Theorem 6.2 (The Pythagorean Theorem). Two vectors u and v are orthogonal if and only if
||u+ v||2 = ||u||2 + ||v||2.

Theorem 6.3. Let A be an m× n matrix. The orthogonal complement of the row space of A is the null
space of A, and the orthogonal complement of the column space of A is the null space of AT :

(RowA)⊥ = NulA and (ColA)⊥ = NulAT

Theorem 6.4. If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn, then S is linearly
independent and hence is a basis for the subspace spanned by S.

Theorem 6.5. Let {u1, . . . ,up} be an orthogonal basis for a subspace W of Rn. For each y in W , the
weights of the linear combination

y = c1u1 + · · ·+ cpup

are given by

cj =
y · uj

uj · uj
(j = 1, . . . , p)

Theorem 6.6. An m× n matrix U has orthonormal columns if and only if UTU = I.

Theorem 6.7. Let U be an m× n matrix with orthonormal columns, and let x and y be in Rn. Then

a. ||Ux|| = ||x||

b. (Ux) · (Uy) = x · y

c. (Ux) · (Uy) = 0 if and only if x · y = 0

Theorem 6.8 (The Orthogonal Decomposition Theorem). Let W be a subspace of Rn. Then each y ∈ Rn

can be written uniquely in the form
y = ŷ + z

where ŷ is in W and z is in W⊥. In fact, if {u1, . . . ,up} is any orthogonal basis of W , then

ŷ =
y · u1

u1 · u1
u1 + · · ·+

y · up

up · up
up

and z = y − ŷ.

Theorem 6.9 (The Best Approximation Theorem). Let W be a subspace of Rn, let y be any vector in Rn,
and let ŷ be the orthogonal projection of y onto W . Then ŷ is the closest point in W to y, in the sense that

||y − ŷ|| < ||y − v||

for all v ∈W distinct from ŷ.

Theorem 6.10. If {u1, . . . ,up} is an orthonormal basis for a subspace W of Rn, then

projWy = (y · u1)u1 + · · ·+ (y · up)up

If U = [u1 u2 · · · up], then
projWy = UUTy for all y ∈ Rn.

Theorem 6.11 (The Gram-Schmidt Process). See section 6.2.
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Theorem 6.12 (The QR Factorization). If A is an m× n matrix with linearly independent columns, then
A can be factored as A = QR, where Q is an m× n matrix whose columns form an orthonormal basis for
ColA and R is an n× n upper triangular invertible matrix with positive entries on its diagonal.

Theorem 6.13. The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions
of the normal equations ATAx = AT b.

Theorem 6.14. Let A be an m× n matrix. The following statements are logically equivalent:

a. The equation Ax = b has a unique least-squares solution for each b ∈ Rm.

b. The columns of A are linearly independent.

c. The matrix ATA is invertible.

When these statements are true, the least-squares solution x̂ is given by

x̂ = (ATA)−1AT b.

Theorem 6.15. Given an m× n matrix A with linearly independent columns, let A = QR be a QR
factorization of A as in thm 6.12. Then, for each b ∈ Rm, the equation Ax = b has a unique least-squares
solution, given by

x̂ = R−1QT b.
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Determinant, 17, 18
Diagonal matrix, 25
Diagonalizable, 41
Dimension, 30
Distance, 45
Domain, 9

Eigenspace, 38
Eigenvalue, 37
Eigenvector, 37

Homogeneous system, 7

Identity matrix, 4
Image, 9
Inconsistent system, 2
Inverse, 14
Invertible, 14, 15
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lower triangular, 19
upper triangular, 19

Trivial solution, 7

Variable

basic, 4

free, 4

Vector, 4

Vector space, 24
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